Interdisciplinary Bayesian Statistics EBEB 2014 /

Through refereed papers, this volume focuses on the foundations of the Bayesian paradigm; their comparison to objectivistic or frequentist Statistics counterparts; and the appropriate application of Bayesian foundations. This research in Bayesian Statistics is applicable to data analysis in biostati...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Polpo, Adriano (Επιμελητής έκδοσης), Louzada, Francisco (Επιμελητής έκδοσης), Rifo, Laura L. R. (Επιμελητής έκδοσης), Stern, Julio M. (Επιμελητής έκδοσης), Lauretto, Marcelo (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Springer Proceedings in Mathematics & Statistics, 118
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04258nam a22004935i 4500
001 978-3-319-12454-4
003 DE-He213
005 20151204155940.0
007 cr nn 008mamaa
008 150225s2015 gw | s |||| 0|eng d
020 |a 9783319124544  |9 978-3-319-12454-4 
024 7 |a 10.1007/978-3-319-12454-4  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
245 1 0 |a Interdisciplinary Bayesian Statistics  |h [electronic resource] :  |b EBEB 2014 /  |c edited by Adriano Polpo, Francisco Louzada, Laura L. R. Rifo, Julio M. Stern, Marcelo Lauretto. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XVIII, 366 p. 67 illus., 45 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1009 ;  |v 118 
505 0 |a What About the Posterior Distributions When the Model is Non-dominated -- Bayesian Learning of Material Density Function by Multiple Sequential Inversions of 2-D Images in Electron Microscopy -- Problems with Constructing Tests to Accept the Null Hypothesis -- Cognitive-Constructivism, Quine, Dogmas of Empiricism, and Munchhausen’s Trilemma -- A maximum entropy approach to learn Bayesian networks from incomplete data -- Bayesian Inference in Cumulative Distribution Fields -- MCMC-Driven Adaptive Multiple Importance Sampling -- Bayes Factors for comparison of restricted simple linear regression coefficients -- A Spanning Tree Hierarchical Model for Land Cover Classification -- Nonparametric Bayesian regression under combinations of local shape constraints -- A Bayesian Approach to Predicting Football Match Outcomes Considering Time Effect Weight -- Homogeneity tests for 22 contingency tables -- Combining Optimization and Randomization Approaches for the Design of Clinical Trials -- Factor analysis with mixture modeling to evaluate coherent patterns in microarray data. 
520 |a Through refereed papers, this volume focuses on the foundations of the Bayesian paradigm; their comparison to objectivistic or frequentist Statistics counterparts; and the appropriate application of Bayesian foundations. This research in Bayesian Statistics is applicable to data analysis in biostatistics, clinical trials, law, engineering, and the social sciences. EBEB, the Brazilian Meeting on Bayesian Statistics, is held every two years by the ISBrA, the International Society for Bayesian Analysis, one of the most active chapters of the ISBA. The 12th meeting took place March 10-14, 2014 in Atibaia. Interest in foundations of inductive Statistics has grown recently in accordance with the increasing availability of Bayesian methodological alternatives. Scientists need to deal with the ever more difficult choice of the optimal method to apply to their problem. This volume shows how Bayes can be the answer. The examination and discussion on the foundations work towards the goal of proper application of Bayesian methods by the scientific community. Individual papers range in focus from posterior distributions for non-dominated models, to combining optimization and randomization approaches for the design of clinical trials, and classification of archaeological fragments with Bayesian networks. 
650 0 |a Statistics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences. 
650 2 4 |a Statistics, general. 
700 1 |a Polpo, Adriano.  |e editor. 
700 1 |a Louzada, Francisco.  |e editor. 
700 1 |a Rifo, Laura L. R.  |e editor. 
700 1 |a Stern, Julio M.  |e editor. 
700 1 |a Lauretto, Marcelo.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319124537 
830 0 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1009 ;  |v 118 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-12454-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)