Statistical Physics of Non-Thermal Phase Transitions From Foundations to Applications /

Statistical physics can be used to better understand non-thermal complex systems—phenomena such as stock-market crashes, revolutions in society and in science, fractures in engineered materials and in the Earth’s crust, catastrophes, traffic jams, petroleum clusters, polymerization, self-organized c...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Abaimov, Sergey G. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Springer Series in Synergetics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03423nam a22005055i 4500
001 978-3-319-12469-8
003 DE-He213
005 20151103130206.0
007 cr nn 008mamaa
008 150518s2015 gw | s |||| 0|eng d
020 |a 9783319124698  |9 978-3-319-12469-8 
024 7 |a 10.1007/978-3-319-12469-8  |2 doi 
040 |d GrThAP 
050 4 |a QC174.7-175.36 
072 7 |a PHS  |2 bicssc 
072 7 |a PHDT  |2 bicssc 
072 7 |a SCI055000  |2 bisacsh 
082 0 4 |a 621  |2 23 
100 1 |a Abaimov, Sergey G.  |e author. 
245 1 0 |a Statistical Physics of Non-Thermal Phase Transitions  |h [electronic resource] :  |b From Foundations to Applications /  |c by Sergey G. Abaimov. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XIV, 497 p. 144 illus., 2 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Synergetics,  |x 0172-7389 
505 0 |a Preface -- Fractals -- Stastistical Physics, Ensemble Theory, Free Energy Potential -- The Ising Model -- The Theory of Percolation -- Damage Phenomena -- Correlations, Susceptibility, and the Fluctuation-Dissipation Theorem -- The Renormalization Group -- Scaling, the Finite-Size Effect, Cross-Over Effects. 
520 |a Statistical physics can be used to better understand non-thermal complex systems—phenomena such as stock-market crashes, revolutions in society and in science, fractures in engineered materials and in the Earth’s crust, catastrophes, traffic jams, petroleum clusters, polymerization, self-organized criticality and many others exhibit behaviors resembling those of thermodynamic systems. In particular, many of these systems possess phase transitions identical to critical or spinodal phenomena in statistical physics. The application of the well-developed formalism of statistical physics to non-thermal complex systems may help to predict and prevent such catastrophes as earthquakes, snow-avalanches and landslides, failure of engineering structures, or economical crises. This book addresses the issue step-by-step, from phenomenological analogies between complex systems and statistical physics to more complex aspects, such as correlations, fluctuation-dissipation theorem, susceptibility, the concept of free energy, renormalization group approach and scaling. Fractals and multifractals, the Ising model, percolation, damage phenomena, critical and spinodal phase transitions, crossover effects and finite-size effects are some of the topics covered in Statistical Physics of Non-Thermal Phase Transitions. 
650 0 |a Physics. 
650 0 |a Phase transitions (Statistical physics). 
650 0 |a Statistical physics. 
650 0 |a Dynamical systems. 
650 0 |a Complexity, Computational. 
650 1 4 |a Physics. 
650 2 4 |a Statistical Physics, Dynamical Systems and Complexity. 
650 2 4 |a Complexity. 
650 2 4 |a Phase Transitions and Multiphase Systems. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319124681 
830 0 |a Springer Series in Synergetics,  |x 0172-7389 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-12469-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)