Approximation of Stochastic Invariant Manifolds Stochastic Manifolds for Nonlinear SPDEs I /

This first volume is concerned with the analytic derivation of explicit formulas for the leading-order Taylor approximations of (local) stochastic invariant manifolds associated with a broad class of nonlinear stochastic partial differential equations. These approximations  take the form of Lyapunov...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Chekroun, Mickaël D. (Συγγραφέας), Liu, Honghu (Συγγραφέας), Wang, Shouhong (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:SpringerBriefs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • General Introduction
  • Stochastic Invariant Manifolds: Background and Main Contributions
  • Preliminaries
  • Stochastic Evolution Equations
  • Random Dynamical Systems
  • Cohomologous Cocycles and Random Evolution Equations
  • Linearized Stochastic Flow and Related Estimates
  • Existence and Attraction Properties of Global Stochastic Invariant Manifolds
  • Existence and Smoothness of Global Stochastic Invariant Manifolds
  • Asymptotic Completeness of Stochastic Invariant Manifolds
  • Local Stochastic Invariant Manifolds: Preparation to Critical Manifolds
  • Local Stochastic Critical Manifolds: Existence and Approximation Formulas
  • Standing Hypotheses
  • Existence of Local Stochastic Critical Manifolds
  • Approximation of Local Stochastic Critical Manifolds
  • Proofs of Theorem 6.1 and Corollary 6.1
  • Approximation of Stochastic Hyperbolic Invariant Manifolds
  • A Classical and Mild Solutions of the Transformed RPDE
  • B Proof of Theorem 4.1
  • References.