Propagation of Interval and Probabilistic Uncertainty in Cyberinfrastructure-related Data Processing and Data Fusion

On various examples ranging from geosciences to environmental sciences, this book explains how to generate an adequate description of uncertainty, how to justify semiheuristic algorithms for processing uncertainty, and how to make these algorithms more computationally efficient. It explains in what...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Servin, Christian (Συγγραφέας), Kreinovich, Vladik (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Studies in Systems, Decision and Control, 15
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03185nam a22004935i 4500
001 978-3-319-12628-9
003 DE-He213
005 20151204183654.0
007 cr nn 008mamaa
008 141120s2015 gw | s |||| 0|eng d
020 |a 9783319126289  |9 978-3-319-12628-9 
024 7 |a 10.1007/978-3-319-12628-9  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Servin, Christian.  |e author. 
245 1 0 |a Propagation of Interval and Probabilistic Uncertainty in Cyberinfrastructure-related Data Processing and Data Fusion  |h [electronic resource] /  |c by Christian Servin, Vladik Kreinovich. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a VIII, 112 p. 22 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Systems, Decision and Control,  |x 2198-4182 ;  |v 15 
505 0 |a Introduction -- Towards a More Adequate Description of Uncertainty -- Towards Justification of Heuristic Techniques for Processing Uncertainty -- Towards More Computationally Efficient Techniques for Processing Uncertainty -- Towards Better Ways of Extracting Information About Uncertainty from Data. 
520 |a On various examples ranging from geosciences to environmental sciences, this book explains how to generate an adequate description of uncertainty, how to justify semiheuristic algorithms for processing uncertainty, and how to make these algorithms more computationally efficient. It explains in what sense the existing approach to uncertainty as a combination of random and systematic components is only an approximation, presents a more adequate three-component model with an additional periodic error component, and explains how uncertainty propagation techniques can be extended to this model. The book provides a justification for a practically efficient heuristic technique (based on fuzzy decision-making). It explains how the computational complexity of uncertainty processing can be reduced. The book also shows how to take into account that in real life, the information about uncertainty is often only partially known, and, on several practical examples, explains how to extract the missing information about uncertainty from the available data. 
650 0 |a Engineering. 
650 0 |a Data mining. 
650 0 |a Statistics. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
700 1 |a Kreinovich, Vladik.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319126272 
830 0 |a Studies in Systems, Decision and Control,  |x 2198-4182 ;  |v 15 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-12628-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)