Non-perturbative Description of Quantum Systems

This book introduces systematically the operator method for the solution of the Schrödinger equation. This method permits to describe the states of quantum systems in the entire range of parameters of Hamiltonian with a predefined accuracy. The operator method is unique compared with other non-pertu...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Feranchuk, Ilya (Συγγραφέας), Ivanov, Alexey (Συγγραφέας), Le, Van-Hoang (Συγγραφέας), Ulyanenkov, Alexander (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Lecture Notes in Physics, 894
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03236nam a22005415i 4500
001 978-3-319-13006-4
003 DE-He213
005 20151030151034.0
007 cr nn 008mamaa
008 141218s2015 gw | s |||| 0|eng d
020 |a 9783319130064  |9 978-3-319-13006-4 
024 7 |a 10.1007/978-3-319-13006-4  |2 doi 
040 |d GrThAP 
050 4 |a QC173.96-174.52 
072 7 |a PHQ  |2 bicssc 
072 7 |a SCI057000  |2 bisacsh 
082 0 4 |a 530.12  |2 23 
100 1 |a Feranchuk, Ilya.  |e author. 
245 1 0 |a Non-perturbative Description of Quantum Systems  |h [electronic resource] /  |c by Ilya Feranchuk, Alexey Ivanov, Van-Hoang Le, Alexander Ulyanenkov. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XV, 362 p. 63 illus., 43 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Physics,  |x 0075-8450 ;  |v 894 
505 0 |a Capabilities of approximate methods in quantum theory -- Basics of the operator method -- Applications of OM for one-dimensional systems -- Operator method for quantum statistics -- Quantum systems with several degrees of freedom -- Two-dimensional exciton in magnetic field with arbitrary strength -- Atoms in the external electromagnetic fields -- Many-electron atoms -- Systems with infinite number of degrees of freedom. 
520 |a This book introduces systematically the operator method for the solution of the Schrödinger equation. This method permits to describe the states of quantum systems in the entire range of parameters of Hamiltonian with a predefined accuracy. The operator method is unique compared with other non-perturbative methods due to its ability to deliver in zeroth approximation the uniformly suitable estimate for both ground and excited states of quantum system. The method has been generalized for the application to quantum statistics and quantum field theory.  In this book, the numerous applications of operator method for various physical systems are demonstrated. Simple models are used to illustrate the basic principles of the method which are further used for the solution of complex problems of quantum theory for many-particle systems. The results obtained are supplemented by numerical calculations, presented as tables and figures. 
650 0 |a Physics. 
650 0 |a Quantum physics. 
650 0 |a Atomic structure. 
650 0 |a Molecular structure. 
650 0 |a Spectra. 
650 1 4 |a Physics. 
650 2 4 |a Quantum Physics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Atomic/Molecular Structure and Spectra. 
700 1 |a Ivanov, Alexey.  |e author. 
700 1 |a Le, Van-Hoang.  |e author. 
700 1 |a Ulyanenkov, Alexander.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319130057 
830 0 |a Lecture Notes in Physics,  |x 0075-8450 ;  |v 894 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-13006-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
912 |a ZDB-2-LNP 
950 |a Physics and Astronomy (Springer-11651)