Lie Groups, Lie Algebras, and Representations An Elementary Introduction /

This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for pro...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Hall, Brian C. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Έκδοση:Second Edition.
Σειρά:Graduate Texts in Mathematics, 222
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04506nam a22005655i 4500
001 978-3-319-13467-3
003 DE-He213
005 20160623150437.0
007 cr nn 008mamaa
008 150511s2015 gw | s |||| 0|eng d
020 |a 9783319134673  |9 978-3-319-13467-3 
024 7 |a 10.1007/978-3-319-13467-3  |2 doi 
040 |d GrThAP 
050 4 |a QA252.3 
050 4 |a QA387 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT014000  |2 bisacsh 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 512.55  |2 23 
082 0 4 |a 512.482  |2 23 
100 1 |a Hall, Brian C.  |e author. 
245 1 0 |a Lie Groups, Lie Algebras, and Representations  |h [electronic resource] :  |b An Elementary Introduction /  |c by Brian C. Hall. 
250 |a Second Edition. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XIII, 449 p. 79 illus., 7 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 222 
505 0 |a Part I: General Theory.-Matrix Lie Groups -- The Matrix Exponential -- Lie Algebras -- Basic Representation Theory -- The Baker–Campbell–Hausdorff Formula and its Consequences -- Part II: Semisimple Lie Algebras -- The Representations of sl(3;C).-Semisimple Lie Algebras.- Root Systems -- Representations of Semisimple Lie Algebras -- Further Properties of the Representations -- Part III: Compact lie Groups -- Compact Lie Groups and Maximal Tori -- The Compact Group Approach to Representation Theory -- Fundamental Groups of Compact Lie Groups -- Appendices. 
520 |a This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compact groups, independent of Lie-algebraic arguments The second edition of Lie Groups, Lie Algebras, and Representations contains many substantial improvements and additions, among them: an entirely new part devoted to the structure and representation theory of compact Lie groups; a complete derivation of the main properties of root systems; the construction of finite-dimensional representations of semisimple Lie algebras has been elaborated; a treatment of universal enveloping algebras, including a proof of the Poincaré–Birkhoff–Witt theorem and the existence of Verma modules; complete proofs of the Weyl character formula, the Weyl dimension formula and the Kostant multiplicity formula. Review of the first edition: “This is an excellent book. It deserves to, and undoubtedly will, become the standard text for early graduate courses in Lie group theory ... an important addition to the textbook literature ... it is highly recommended.” — The Mathematical Gazette. 
650 0 |a Mathematics. 
650 0 |a Nonassociative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 1 4 |a Mathematics. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Non-associative Rings and Algebras. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319134666 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 222 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-13467-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)