Boosted Statistical Relational Learners From Benchmarks to Data-Driven Medicine /

This SpringerBrief addresses the challenges of analyzing multi-relational and noisy data by proposing several Statistical Relational Learning (SRL) methods. These methods combine the expressiveness of first-order logic and the ability of probability theory to handle uncertainty. It provides an overv...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Natarajan, Sriraam (Συγγραφέας), Kersting, Kristian (Συγγραφέας), Khot, Tushar (Συγγραφέας), Shavlik, Jude (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:SpringerBriefs in Computer Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03494nam a22005655i 4500
001 978-3-319-13644-8
003 DE-He213
005 20151204154550.0
007 cr nn 008mamaa
008 150303s2014 gw | s |||| 0|eng d
020 |a 9783319136448  |9 978-3-319-13644-8 
024 7 |a 10.1007/978-3-319-13644-8  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Natarajan, Sriraam.  |e author. 
245 1 0 |a Boosted Statistical Relational Learners  |h [electronic resource] :  |b From Benchmarks to Data-Driven Medicine /  |c by Sriraam Natarajan, Kristian Kersting, Tushar Khot, Jude Shavlik. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a VIII, 74 p. 25 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5768 
505 0 |a Introduction -- Statistical Relational Learning -- Boosting (Bi-)Directed Relational Models -- Boosting Undirected Relational Models -- Boosting in the presence of missing data -- Boosting Statistical Relational Learning in Action -- Appendix: Booster System. 
520 |a This SpringerBrief addresses the challenges of analyzing multi-relational and noisy data by proposing several Statistical Relational Learning (SRL) methods. These methods combine the expressiveness of first-order logic and the ability of probability theory to handle uncertainty. It provides an overview of the methods and the key assumptions that allow for adaptation to different models and real world applications. The models are highly attractive due to their compactness and comprehensibility but learning their structure is computationally intensive. To combat this problem, the authors review the use of functional gradients for boosting the structure and the parameters of statistical relational models. The algorithms have been applied successfully in several SRL settings and have been adapted to several real problems from Information extraction in text to medical problems. Including both context and well-tested applications, Boosting Statistical Relational Learning from Benchmarks to Data-Driven Medicine is designed for researchers and professionals in machine learning and data mining. Computer engineers or students interested in statistics, data management, or health informatics will also find this brief a valuable resource. 
650 0 |a Computer science. 
650 0 |a Health informatics. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 0 |a Statistics. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Health Informatics. 
700 1 |a Kersting, Kristian.  |e author. 
700 1 |a Khot, Tushar.  |e author. 
700 1 |a Shavlik, Jude.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319136431 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5768 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-13644-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)