Convex Optimization in Normed Spaces Theory, Methods and Examples /

This work is intended to serve as a guide for graduate students and researchers who wish to get acquainted with the main theoretical and practical tools for the numerical minimization of convex functions on Hilbert spaces. Therefore, it contains the main tools that are necessary to conduct independe...

Full description

Bibliographic Details
Main Author: Peypouquet, Juan (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Series:SpringerBriefs in Optimization,
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 02507nam a22005055i 4500
001 978-3-319-13710-0
003 DE-He213
005 20151116135143.0
007 cr nn 008mamaa
008 150318s2015 gw | s |||| 0|eng d
020 |a 9783319137100  |9 978-3-319-13710-0 
024 7 |a 10.1007/978-3-319-13710-0  |2 doi 
040 |d GrThAP 
050 4 |a QA315-316 
050 4 |a QA402.3 
050 4 |a QA402.5-QA402.6 
072 7 |a PBKQ  |2 bicssc 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT005000  |2 bisacsh 
072 7 |a MAT029020  |2 bisacsh 
082 0 4 |a 515.64  |2 23 
100 1 |a Peypouquet, Juan.  |e author. 
245 1 0 |a Convex Optimization in Normed Spaces  |h [electronic resource] :  |b Theory, Methods and Examples /  |c by Juan Peypouquet. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XIV, 124 p. 17 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Optimization,  |x 2190-8354 
505 0 |a Basic Functional Analysis -- Existence of Minimizers -- Convex Analysis and Subdifferential Calculus -- Examples -- Problem-solving Strategies -- Keynote Iterative Methods. 
520 |a This work is intended to serve as a guide for graduate students and researchers who wish to get acquainted with the main theoretical and practical tools for the numerical minimization of convex functions on Hilbert spaces. Therefore, it contains the main tools that are necessary to conduct independent research on the topic. It is also a concise, easy-to-follow and self-contained textbook, which may be useful for any researcher working on related fields, as well as teachers giving graduate-level courses on the topic. It will contain a thorough revision of the extant literature including both classical and state-of-the-art references. 
650 0 |a Mathematics. 
650 0 |a Algorithms. 
650 0 |a Calculus of variations. 
650 1 4 |a Mathematics. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Algorithms. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319137094 
830 0 |a SpringerBriefs in Optimization,  |x 2190-8354 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-13710-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)