Numerical Methods for Nonlinear Partial Differential Equations

The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Bartels, Sören (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Springer Series in Computational Mathematics, 47
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03171nam a22005175i 4500
001 978-3-319-13797-1
003 DE-He213
005 20151030061237.0
007 cr nn 008mamaa
008 150119s2015 gw | s |||| 0|eng d
020 |a 9783319137971  |9 978-3-319-13797-1 
024 7 |a 10.1007/978-3-319-13797-1  |2 doi 
040 |d GrThAP 
050 4 |a QA297-299.4 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT021000  |2 bisacsh 
072 7 |a MAT006000  |2 bisacsh 
082 0 4 |a 518  |2 23 
100 1 |a Bartels, Sören.  |e author. 
245 1 0 |a Numerical Methods for Nonlinear Partial Differential Equations  |h [electronic resource] /  |c by Sören Bartels. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a X, 393 p. 122 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Computational Mathematics,  |x 0179-3632 ;  |v 47 
505 0 |a 1. Introduction -- Part I: Analytical and Numerical Foundations -- 2. Analytical Background -- 3. FEM for Linear Problems -- 4. Concepts for Discretized Problems -- Part II: Approximation of Classical Formulations -- 5. The Obstacle Problem -- 6. The Allen-Cahn Equation -- 7. Harmonic Maps -- 8. Bending Problems -- Part III: Methods for Extended Formulations -- 9. Nonconvexity and Microstructure -- 10. Free Discontinuities -- 11. Elastoplasticity -- Auxiliary Routines -- Frequently Used Notation -- Index. 
520 |a The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations. 
650 0 |a Mathematics. 
650 0 |a Partial differential equations. 
650 0 |a Algorithms. 
650 0 |a Numerical analysis. 
650 0 |a Calculus of variations. 
650 1 4 |a Mathematics. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Algorithms. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319137964 
830 0 |a Springer Series in Computational Mathematics,  |x 0179-3632 ;  |v 47 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-13797-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)