Numerical Methods for Nonlinear Partial Differential Equations
The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2015.
|
Σειρά: | Springer Series in Computational Mathematics,
47 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- 1. Introduction
- Part I: Analytical and Numerical Foundations
- 2. Analytical Background
- 3. FEM for Linear Problems
- 4. Concepts for Discretized Problems
- Part II: Approximation of Classical Formulations
- 5. The Obstacle Problem
- 6. The Allen-Cahn Equation
- 7. Harmonic Maps
- 8. Bending Problems
- Part III: Methods for Extended Formulations
- 9. Nonconvexity and Microstructure
- 10. Free Discontinuities
- 11. Elastoplasticity
- Auxiliary Routines
- Frequently Used Notation
- Index.