How to Count An Introduction to Combinatorics and Its Applications /

Providing a self-contained resource for upper undergraduate courses in combinatorics, this text emphasizes computation, problem solving, and proof technique. In particular, the book places special emphasis the Principle of Inclusion and Exclusion and the Multiplication Principle. To this end, exerci...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Beeler, Robert A. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02933nam a22004335i 4500
001 978-3-319-13844-2
003 DE-He213
005 20151123194735.0
007 cr nn 008mamaa
008 150314s2015 gw | s |||| 0|eng d
020 |a 9783319138442  |9 978-3-319-13844-2 
024 7 |a 10.1007/978-3-319-13844-2  |2 doi 
040 |d GrThAP 
050 4 |a QA164-167.2 
072 7 |a PBV  |2 bicssc 
072 7 |a MAT036000  |2 bisacsh 
082 0 4 |a 511.6  |2 23 
100 1 |a Beeler, Robert A.  |e author. 
245 1 0 |a How to Count  |h [electronic resource] :  |b An Introduction to Combinatorics and Its Applications /  |c by Robert A. Beeler. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XV, 361 p. 61 illus., 2 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preliminaries -- Basic Counting -- The Binomial Coefficient -- Distribution Problems -- Generating Functions -- Recurrence Relations -- Advanced Counting - Inclusion and Exclusion -- Advanced Counting - Polya Theory -- Application: Probability -- Application: Combinatorial Designs -- Application: Graph Theory -- Appendices. 
520 |a Providing a self-contained resource for upper undergraduate courses in combinatorics, this text emphasizes computation, problem solving, and proof technique. In particular, the book places special emphasis the Principle of Inclusion and Exclusion and the Multiplication Principle. To this end, exercise sets are included at the end of every section, ranging from simple computations (evaluate a formula for a given set of values) to more advanced proofs. The exercises are designed to test students' understanding of new material, while reinforcing a working mastery of the key concepts previously developed in the book. Intuitive descriptions for many abstract techniques are included. Students often struggle with certain topics, such as generating functions, and this intuitive approach to the problem is helpful in their understanding. When possible, the book introduces concepts using combinatorial methods (as opposed to induction or algebra) to prove identities. Students are also asked to prove identities using combinatorial methods as part of their exercises. These methods have several advantages over induction or algebra. 
650 0 |a Mathematics. 
650 0 |a Probabilities. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Combinatorics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319138435 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-13844-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)