Beauville Surfaces and Groups

This collection of surveys and research articles explores a fascinating class of varieties: Beauville surfaces. It is the first time that these objects are discussed from the points of view of algebraic geometry as well as group theory. The book also includes various open problems and conjectures re...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Bauer, Ingrid (Επιμελητής έκδοσης), Garion, Shelly (Επιμελητής έκδοσης), Vdovina, Alina (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Springer Proceedings in Mathematics & Statistics, 123
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02872nam a22004935i 4500
001 978-3-319-13862-6
003 DE-He213
005 20151030021331.0
007 cr nn 008mamaa
008 150414s2015 gw | s |||| 0|eng d
020 |a 9783319138626  |9 978-3-319-13862-6 
024 7 |a 10.1007/978-3-319-13862-6  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
245 1 0 |a Beauville Surfaces and Groups  |h [electronic resource] /  |c edited by Ingrid Bauer, Shelly Garion, Alina Vdovina. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a IX, 183 p. 23 illus., 3 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1009 ;  |v 123 
520 |a This collection of surveys and research articles explores a fascinating class of varieties: Beauville surfaces. It is the first time that these objects are discussed from the points of view of algebraic geometry as well as group theory. The book also includes various open problems and conjectures related to these surfaces. Beauville surfaces are a class of rigid regular surfaces of general type, which can be described in a purely algebraic combinatoric way. They play an important role in different fields of mathematics like algebraic geometry, group theory and number theory. The notion of Beauville surface was introduced by Fabrizio Catanese in 2000 and, after the first systematic study of these surfaces by Ingrid Bauer, Fabrizio Catanese and Fritz Grunewald, there has been an increasing interest in the subject. These proceedings reflect the topics of the lectures presented during the workshop ‘Beauville Surfaces and Groups 2012’, held at Newcastle University, UK in June 2012. This conference brought together, for the first time, experts of different fields of mathematics interested in Beauville surfaces. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Group theory. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Number Theory. 
700 1 |a Bauer, Ingrid.  |e editor. 
700 1 |a Garion, Shelly.  |e editor. 
700 1 |a Vdovina, Alina.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319138619 
830 0 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1009 ;  |v 123 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-13862-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)