Fixed Point Theory in Modular Function Spaces

This monograph provides a concise introduction to the main results and methods of the fixed point theory in modular function spaces. Modular function spaces are natural generalizations of both function and sequence variants of many important spaces like Lebesgue, Orlicz, Musielak-Orlicz, Lorentz, Or...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Khamsi, Mohamed A. (Συγγραφέας), Kozlowski, Wojciech M. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2015.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03121nam a22004455i 4500
001 978-3-319-14051-3
003 DE-He213
005 20150324150437.0
007 cr nn 008mamaa
008 150324s2015 gw | s |||| 0|eng d
020 |a 9783319140513  |9 978-3-319-14051-3 
024 7 |a 10.1007/978-3-319-14051-3  |2 doi 
040 |d GrThAP 
050 4 |a QA329-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.724  |2 23 
100 1 |a Khamsi, Mohamed A.  |e author. 
245 1 0 |a Fixed Point Theory in Modular Function Spaces  |h [electronic resource] /  |c by Mohamed A. Khamsi, Wojciech M. Kozlowski. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2015. 
300 |a X, 245 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Fixed Point Theory in Metric Spaces: An Introduction -- Modular Function Spaces -- Geometry of Modular Function Spaces -- Fixed Point Existence Theorems in Modular Function Spaces -- Fixed Point Construction Processes -- Semigroups of Nonlinear Mappings in Modular Function Spaces -- Modular Metric Spaces. 
520 |a This monograph provides a concise introduction to the main results and methods of the fixed point theory in modular function spaces. Modular function spaces are natural generalizations of both function and sequence variants of many important spaces like Lebesgue, Orlicz, Musielak-Orlicz, Lorentz, Orlicz-Lorentz, Calderon-Lozanovskii spaces, and others. In most cases, particularly in applications to integral operators, approximation and fixed point results, modular type conditions are much more natural and can be more easily verified than their metric or norm counterparts. There are also important results that can be proved only using the apparatus of modular function spaces. The material is presented in a systematic and rigorous manner that allows readers to grasp the key ideas and to gain a working knowledge of the theory. Despite the fact that the work is largely self-contained, extensive bibliographic references are included, and open problems and further development directions are suggested when applicable.   The monograph is targeted mainly at the mathematical research community but it is also accessible to graduate students interested in functional analysis and its applications. It could also serve as a text for an advanced course in fixed point theory of mappings acting in modular function spaces. 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 0 |a Operator theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Operator Theory. 
650 2 4 |a Functional Analysis. 
700 1 |a Kozlowski, Wojciech M.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319140506 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-14051-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)