|
|
|
|
LEADER |
03660nam a22005175i 4500 |
001 |
978-3-319-14252-4 |
003 |
DE-He213 |
005 |
20151204183950.0 |
007 |
cr nn 008mamaa |
008 |
150418s2015 gw | s |||| 0|eng d |
020 |
|
|
|a 9783319142524
|9 978-3-319-14252-4
|
024 |
7 |
|
|a 10.1007/978-3-319-14252-4
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a QC175.16.C6
|
072 |
|
7 |
|a PHM
|2 bicssc
|
072 |
|
7 |
|a SCI057000
|2 bisacsh
|
072 |
|
7 |
|a SCI074000
|2 bisacsh
|
082 |
0 |
4 |
|a 539
|2 23
|
100 |
1 |
|
|a Wall, Michael L.
|e author.
|
245 |
1 |
0 |
|a Quantum Many-Body Physics of Ultracold Molecules in Optical Lattices
|h [electronic resource] :
|b Models and Simulation Methods /
|c by Michael L. Wall.
|
264 |
|
1 |
|a Cham :
|b Springer International Publishing :
|b Imprint: Springer,
|c 2015.
|
300 |
|
|
|a XXX, 374 p. 68 illus., 43 illus. in color.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Springer Theses, Recognizing Outstanding Ph.D. Research,
|x 2190-5053
|
505 |
0 |
|
|a Part I: Introduction -- General Introduction -- Models for Strongly Correlated Lattice Physics -- Part II: The Molecular Hubbard Hamiltonian -- Emergent Timescales in Entangled Quantum Dynamics of Ultracold Molecules in Optical Lattices -- Hyperfine Molecular Hubbard Hamiltonian -- Part III: The Fermi Resonance Hamiltonian -- Microscopic Model for Feshbach Interacting Fermions in an Optical Lattice with Arbitrary Scattering Length and Resonance Width -- Part IV: Matrix Product States -- Matrix Product States: Foundations -- Out-of-Equilibrium Dynamics with Matrix Product States -- The Infinite Size Variational Matrix Product State Algorithm -- Finite Temperature Matrix Product State Algorithms and Applications -- Part V: Open Source Code and Educational Materials -- Open Source Code Development -- Educational Materials -- Part VI: Conclusions and Appendices -- Conclusions and Suggestions for Future Research -- Appendix A: Documentation for ALPS V2.0 TEBD Code -- Appendix B: Educational Materials: A Gentle Introduction to Time Evolving Block Decimation (TEBD) -- Appendix C: Educational Materials: Introduction to MPS Algorithms.
|
520 |
|
|
|a This thesis investigates ultracold molecules as a resource for novel quantum many-body physics, in particular by utilizing their rich internal structure and strong, long-range dipole-dipole interactions. In addition, numerical methods based on matrix product states are analyzed in detail, and general algorithms for investigating the static and dynamic properties of essentially arbitrary one-dimensional quantum many-body systems are put forth. Finally, this thesis covers open-source implementations of matrix product state algorithms, as well as educational material designed to aid in the use of understanding such methods.
|
650 |
|
0 |
|a Physics.
|
650 |
|
0 |
|a Atoms.
|
650 |
|
0 |
|a Matter.
|
650 |
|
0 |
|a Phase transformations (Statistical physics).
|
650 |
|
0 |
|a Condensed materials.
|
650 |
|
0 |
|a Condensed matter.
|
650 |
1 |
4 |
|a Physics.
|
650 |
2 |
4 |
|a Quantum Gases and Condensates.
|
650 |
2 |
4 |
|a Numerical and Computational Physics.
|
650 |
2 |
4 |
|a Atoms and Molecules in Strong Fields, Laser Matter Interaction.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319142517
|
830 |
|
0 |
|a Springer Theses, Recognizing Outstanding Ph.D. Research,
|x 2190-5053
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1007/978-3-319-14252-4
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-PHA
|
950 |
|
|
|a Physics and Astronomy (Springer-11651)
|