Tensor Categories and Endomorphisms of von Neumann Algebras with Applications to Quantum Field Theory /

C* tensor categories are a point of contact where Operator Algebras and Quantum Field Theory meet. They are the underlying unifying concept for homomorphisms of (properly infinite) von Neumann algebras and representations of quantum observables. The present introductory text reviews the basic notion...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Bischoff, Marcel (Συγγραφέας), Kawahigashi, Yasuyuki (Συγγραφέας), Longo, Roberto (Συγγραφέας), Rehren, Karl-Henning (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:SpringerBriefs in Mathematical Physics, 3
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03749nam a22005295i 4500
001 978-3-319-14301-9
003 DE-He213
005 20151106151046.0
007 cr nn 008mamaa
008 150113s2015 gw | s |||| 0|eng d
020 |a 9783319143019  |9 978-3-319-14301-9 
024 7 |a 10.1007/978-3-319-14301-9  |2 doi 
040 |d GrThAP 
050 4 |a QC174.45-174.52 
072 7 |a PHS  |2 bicssc 
072 7 |a SCI057000  |2 bisacsh 
082 0 4 |a 530.14  |2 23 
100 1 |a Bischoff, Marcel.  |e author. 
245 1 0 |a Tensor Categories and Endomorphisms of von Neumann Algebras  |h [electronic resource] :  |b with Applications to Quantum Field Theory /  |c by Marcel Bischoff, Yasuyuki Kawahigashi, Roberto Longo, Karl-Henning Rehren. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a X, 94 p. 138 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematical Physics,  |x 2197-1757 ;  |v 3 
505 0 |a Introduction -- Homomorphisms of von Neumann algebras -- Endomorphisms of infinite factors -- Homomorphisms and subfactors -- Non-factorial extensions -- Frobenius algebras, Q-systems and modules -- C* Frobenius algebras -- Q-systems and extensions -- The canonical Q-system -- Modules of Q-systems -- Induced Q-systems and Morita equivalence -- Bimodules -- Tensor product of bimodules -- Q-system calculus -- Reduced Q-systems -- Central decomposition of Q-systems -- Irreducible decomposition of Q-systems -- Intermediate Q-systems -- Q-systems in braided tensor categories -- a-induction -- Mirror Q-systems -- Centre of Q-systems -- Braided product of Q-systems -- The full centre -- Modular tensor categories -- The braided product of two full centres -- Applications in QFT -- Basics of algebraic quantum field theory -- Hard boundaries -- Transparent boundaries -- Further directions -- Conclusions. 
520 |a C* tensor categories are a point of contact where Operator Algebras and Quantum Field Theory meet. They are the underlying unifying concept for homomorphisms of (properly infinite) von Neumann algebras and representations of quantum observables. The present introductory text reviews the basic notions and their cross-relations in different contexts. The focus is on Q-systems that serve as complete invariants, both for subfactors and for extensions of quantum field theory models. It proceeds with various operations on Q-systems (several decompositions, the mirror Q-system, braided product, centre and full centre of Q-systems) some of which are defined only in the presence of a braiding. The last chapter gives a brief exposition of the relevance of the mathematical structures presented in the main body for applications in Quantum Field Theory (in particular two-dimensional Conformal Field Theory, also with boundaries or defects). 
650 0 |a Physics. 
650 0 |a Algebra. 
650 0 |a Mathematical physics. 
650 0 |a Quantum field theory. 
650 0 |a String theory. 
650 1 4 |a Physics. 
650 2 4 |a Quantum Field Theories, String Theory. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Algebra. 
700 1 |a Kawahigashi, Yasuyuki.  |e author. 
700 1 |a Longo, Roberto.  |e author. 
700 1 |a Rehren, Karl-Henning.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319143002 
830 0 |a SpringerBriefs in Mathematical Physics,  |x 2197-1757 ;  |v 3 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-14301-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)