Mathematical Models of Viscous Friction

In this monograph we present a review of a number of recent results on the motion of a classical body immersed in an infinitely extended medium and subjected to the action of an external force. We investigate this topic in the framework of mathematical physics by focusing mainly on the class of pure...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Buttà, Paolo (Συγγραφέας), Cavallaro, Guido (Συγγραφέας), Marchioro, Carlo (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Lecture Notes in Mathematics, 2135
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03348nam a22005775i 4500
001 978-3-319-14759-8
003 DE-He213
005 20151204190702.0
007 cr nn 008mamaa
008 150205s2015 gw | s |||| 0|eng d
020 |a 9783319147598  |9 978-3-319-14759-8 
024 7 |a 10.1007/978-3-319-14759-8  |2 doi 
040 |d GrThAP 
050 4 |a QA401-425 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.15  |2 23 
100 1 |a Buttà, Paolo.  |e author. 
245 1 0 |a Mathematical Models of Viscous Friction  |h [electronic resource] /  |c by Paolo Buttà, Guido Cavallaro, Carlo Marchioro. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XIV, 134 p. 5 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2135 
505 0 |a 1.  Introduction -- 2. Gas of point particles -- 3. Vlasov approximation -- 4. Motion of a body immersed in a Vlasov system -- 5. Motion of a body immersed in a Stokes fluid -- A Infinite Dynamics. 
520 |a In this monograph we present a review of a number of recent results on the motion of a classical body immersed in an infinitely extended medium and subjected to the action of an external force. We investigate this topic in the framework of mathematical physics by focusing mainly on the class of purely Hamiltonian systems, for which very few results are available. We discuss two cases: when the medium is a gas and when it is a fluid. In the first case, the aim is to obtain microscopic models of viscous friction. In the second, we seek to underline some non-trivial features of the motion. Far from giving a general survey on the subject, which is very rich and complex from both a phenomenological and theoretical point of view, we focus on some fairly simple models that can be studied rigorously, thus providing a first step towards a mathematical description of viscous friction. In some cases, we restrict ourselves to studying the problem at a heuristic level, or we present the main ideas, discussing only some aspects of the proof if it is prohibitively technical. This book is principally addressed to researchers or PhD students who are interested in this or related fields of mathematical physics. 
650 0 |a Mathematics. 
650 0 |a Differential equations. 
650 0 |a Partial differential equations. 
650 0 |a Mathematical physics. 
650 0 |a Mechanics. 
650 0 |a Fluids. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Mechanics. 
650 2 4 |a Fluid- and Aerodynamics. 
700 1 |a Cavallaro, Guido.  |e author. 
700 1 |a Marchioro, Carlo.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319147581 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2135 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-14759-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)