Synchronization of Integral and Fractional Order Chaotic Systems A Differential Algebraic and Differential Geometric Approach With Selected Applications in Real-Time /

This book provides a general overview of several concepts of synchronization and brings together related approaches to secure communication in chaotic systems. This is achieved using a combination of analytic, algebraic, geometrical and asymptotical methods to tackle the dynamical feedback stabiliza...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Martínez-Guerra, Rafael (Συγγραφέας), Pérez-Pinacho, Claudia A. (Συγγραφέας), Gómez-Cortés, Gian Carlo (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Understanding Complex Systems,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04445nam a22005655i 4500
001 978-3-319-15284-4
003 DE-He213
005 20151116121025.0
007 cr nn 008mamaa
008 150317s2015 gw | s |||| 0|eng d
020 |a 9783319152844  |9 978-3-319-15284-4 
024 7 |a 10.1007/978-3-319-15284-4  |2 doi 
040 |d GrThAP 
050 4 |a QC174.7-175.36 
072 7 |a PBWR  |2 bicssc 
072 7 |a PHDT  |2 bicssc 
072 7 |a SCI012000  |2 bisacsh 
082 0 4 |a 621  |2 23 
100 1 |a Martínez-Guerra, Rafael.  |e author. 
245 1 0 |a Synchronization of Integral and Fractional Order Chaotic Systems  |h [electronic resource] :  |b A Differential Algebraic and Differential Geometric Approach With Selected Applications in Real-Time /  |c by Rafael Martínez-Guerra, Claudia A. Pérez-Pinacho, Gian Carlo Gómez-Cortés. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XXIV, 242 p. 115 illus., 80 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Understanding Complex Systems,  |x 1860-0832 
505 0 |a Control theory and synchronization -- A model-free based proportional reduced-order observer design for the synchronization of Lorenz system.-  A Model-Free Sliding Observer to Synchronization Problem Using Geometric Techniques -- Experimental synchronization by means of observers -- Synchronization of an uncertain Rikitake System with parametric estimation -- Secure Communications and Synchronization via a Sliding-mode Observer -- Synchronization and anti-synchronization of chaotic systems: A differential and algebraic approach -- Synchronization of chaotic Liouvillian systems: An application to Chua’s oscillator -- Synchronization of Partially unknown Nonlinear Fractional Order Systems -- Generalized Synchronization via the differential primitive element -- Generalized synchronization for a class of non-differentially flat and Liouvillian chaotic systems -- Generalized multi-synchronization by means of a family of dynamical feedbacks.-  Fractional generalized synchronization in nonlinear fractional order systems via a dynamical feedback -- An Observer for a Class of Incommensurate Fractional Order Systems -- Appendex -- Index. 
520 |a This book provides a general overview of several concepts of synchronization and brings together related approaches to secure communication in chaotic systems. This is achieved using a combination of analytic, algebraic, geometrical and asymptotical methods to tackle the dynamical feedback stabilization problem. In particular, differential-geometric and algebraic differential concepts reveal important structural properties of chaotic systems and serve as guide for the construction of design procedures for a wide variety of chaotic systems. The basic differential algebraic and geometric concepts are presented in the first few chapters in a novel way as design tools, together with selected experimental studies demonstrating their importance. The subsequent chapters treat recent applications. Written for graduate students in applied physical sciences, systems engineers, and applied mathematicians interested in synchronization of chaotic systems and in secure communications, this self-contained text requires only basic knowledge of integer ordinary and fractional ordinary differential equations. Design applications are illustrated with the help of several physical models of practical interest. 
650 0 |a Physics. 
650 0 |a Continuum physics. 
650 0 |a Statistical physics. 
650 0 |a Complexity, Computational. 
650 0 |a Vibration. 
650 0 |a Dynamical systems. 
650 0 |a Dynamics. 
650 1 4 |a Physics. 
650 2 4 |a Nonlinear Dynamics. 
650 2 4 |a Vibration, Dynamical Systems, Control. 
650 2 4 |a Classical Continuum Physics. 
650 2 4 |a Complexity. 
700 1 |a Pérez-Pinacho, Claudia A.  |e author. 
700 1 |a Gómez-Cortés, Gian Carlo.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319152837 
830 0 |a Understanding Complex Systems,  |x 1860-0832 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-15284-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)