Mathematical Models for Suspension Bridges Nonlinear Structural Instability /

This work provides a detailed and up-to-the-minute survey of the various stability problems that can affect suspension bridges. In order to deduce some experimental data and rules on the behavior of suspension bridges, a number of historical events are first described, in the course of which several...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Gazzola, Filippo (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:MS&A, Modeling, Simulation and Applications, 15
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03051nam a22005415i 4500
001 978-3-319-15434-3
003 DE-He213
005 20151204141926.0
007 cr nn 008mamaa
008 150522s2015 gw | s |||| 0|eng d
020 |a 9783319154343  |9 978-3-319-15434-3 
024 7 |a 10.1007/978-3-319-15434-3  |2 doi 
040 |d GrThAP 
050 4 |a QA372 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.352  |2 23 
100 1 |a Gazzola, Filippo.  |e author. 
245 1 0 |a Mathematical Models for Suspension Bridges  |h [electronic resource] :  |b Nonlinear Structural Instability /  |c by Filippo Gazzola. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XXI, 259 p. 81 illus., 48 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a MS&A, Modeling, Simulation and Applications,  |x 2037-5255 ;  |v 15 
505 0 |a 1 Book overview -- 2 Brief history of suspension bridges -- 3 One dimensional models -- 4 A fish-bone beam model -- 5 Models with interacting oscillators -- 6 Plate models -- 7 Conclusions. 
520 |a This work provides a detailed and up-to-the-minute survey of the various stability problems that can affect suspension bridges. In order to deduce some experimental data and rules on the behavior of suspension bridges, a number of historical events are first described, in the course of which several questions concerning their stability naturally arise. The book then surveys conventional mathematical models for suspension bridges and suggests new nonlinear alternatives, which can potentially supply answers to some stability questions. New explanations are also provided, based on the nonlinear structural behavior of bridges. All the models and responses presented in the book employ the theory of differential equations and dynamical systems in the broader sense, demonstrating that methods from nonlinear analysis can allow us to determine the thresholds of instability. 
650 0 |a Mathematics. 
650 0 |a Differential equations. 
650 0 |a Partial differential equations. 
650 0 |a Mathematical models. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Structural mechanics. 
650 1 4 |a Mathematics. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Structural Mechanics. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319154336 
830 0 |a MS&A, Modeling, Simulation and Applications,  |x 2037-5255 ;  |v 15 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-15434-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)