Learning with Partially Labeled and Interdependent Data

This book develops two key machine learning principles: the semi-supervised paradigm and learning with interdependent data. It reveals new applications, primarily web related, that transgress the classical machine learning framework through learning with interdependent data. The book traces how the...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Amini, Massih-Reza (Συγγραφέας), Usunier, Nicolas (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03135nam a22004935i 4500
001 978-3-319-15726-9
003 DE-He213
005 20151204180837.0
007 cr nn 008mamaa
008 150507s2015 gw | s |||| 0|eng d
020 |a 9783319157269  |9 978-3-319-15726-9 
024 7 |a 10.1007/978-3-319-15726-9  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Amini, Massih-Reza.  |e author. 
245 1 0 |a Learning with Partially Labeled and Interdependent Data  |h [electronic resource] /  |c by Massih-Reza Amini, Nicolas Usunier. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XIII, 106 p. 12 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Introduction to learning theory -- Semi-supervised learning -- Learning with interdependent data. 
520 |a This book develops two key machine learning principles: the semi-supervised paradigm and learning with interdependent data. It reveals new applications, primarily web related, that transgress the classical machine learning framework through learning with interdependent data. The book traces how the semi-supervised paradigm and the learning to rank paradigm emerged from new web applications, leading to a massive production of heterogeneous textual data. It explains how semi-supervised learning techniques are widely used, but only allow a limited analysis of the information content and thus do not meet the demands of many web-related tasks. Later chapters deal with the development of learning methods for ranking entities in a large collection with respect to precise information needed. In some cases, learning a ranking function can be reduced to learning a classification function over the pairs of examples. The book proves that this task can be efficiently tackled in a new framework: learning with interdependent data. Researchers and professionals in machine learning will find these new perspectives and solutions valuable. Learning with Partially Labeled and Interdependent Data is also useful for advanced-level students of computer science, particularly those focused on statistics and learning. 
650 0 |a Computer science. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 0 |a Statistics. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
700 1 |a Usunier, Nicolas.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319157252 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-15726-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)