Principal Bundles The Quantum Case /

This introductory text is the first book about quantum principal bundles and their quantum connections which are natural generalizations to non-commutative geometry of principal bundles and their connections in differential geometry. To make for a more self-contained book there is also much backgrou...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Sontz, Stephen Bruce (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Universitext,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02550nam a22004935i 4500
001 978-3-319-15829-7
003 DE-He213
005 20151029221651.0
007 cr nn 008mamaa
008 150417s2015 gw | s |||| 0|eng d
020 |a 9783319158297  |9 978-3-319-15829-7 
024 7 |a 10.1007/978-3-319-15829-7  |2 doi 
040 |d GrThAP 
050 4 |a QA401-425 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.15  |2 23 
100 1 |a Sontz, Stephen Bruce.  |e author. 
245 1 0 |a Principal Bundles  |h [electronic resource] :  |b The Quantum Case /  |c by Stephen Bruce Sontz. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XV, 350 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 0172-5939 
505 0 |a Introduction -- First Order Differential Calculus -- Fodc's of a Hopf Algebra -- Adjoint Co-action -- Covariant Bimodules -- Covariant Fodc's -- The Braid Groups -- An Interlude: Some Abstract Nonsense -- The Braided Exterior Algebra -- Higher Order Differential Calculus -- Structures -- Quantum Principal Bundles -- Finite Classical Groups -- Dunkl Operators as Covariant Derivatives in a QPB -- What Next?. 
520 |a This introductory text is the first book about quantum principal bundles and their quantum connections which are natural generalizations to non-commutative geometry of principal bundles and their connections in differential geometry. To make for a more self-contained book there is also much background material on Hopf algebras, (covariant) differential calculi, braid groups and compatible conjugation operations. The approach is slow paced and intuitive in order to provide researchers and students in both mathematics and physics ready access to the material. 
650 0 |a Mathematics. 
650 0 |a Quantum computers. 
650 0 |a Mathematical physics. 
650 0 |a Quantum physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Quantum Computing. 
650 2 4 |a Quantum Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319158280 
830 0 |a Universitext,  |x 0172-5939 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-15829-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)