Branching Process Models of Cancer

This volume develops results on continuous time branching processes and applies them to study rate of tumor growth, extending classic work on the Luria-Delbruck distribution. As a consequence, the authors calculate the probability that mutations that confer resistance to treatment are present at det...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Durrett, Richard (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Mathematical Biosciences Institute Lecture Series ; 1.1
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03187nam a22005055i 4500
001 978-3-319-16065-8
003 DE-He213
005 20151123144347.0
007 cr nn 008mamaa
008 150620s2015 gw | s |||| 0|eng d
020 |a 9783319160658  |9 978-3-319-16065-8 
024 7 |a 10.1007/978-3-319-16065-8  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Durrett, Richard.  |e author. 
245 1 0 |a Branching Process Models of Cancer  |h [electronic resource] /  |c by Richard Durrett. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a VII, 63 p. 6 illus., 2 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathematical Biosciences Institute Lecture Series ;  |v 1.1 
505 0 |a Multistage Theory of Cancer -- Mathematical Overview -- Branching Process Results -- Time for Z_0 to Reach Size M -- Time Until the First Type 1 -- Mutation Before Detection? -- Accumulation of Neutral Mutations -- Properties of the Gamma Function -- Growth of Z_1(t) -- Movements of Z_1(t) -- Luria-Delbruck Distributions -- Number of Type 1's at Time T_M -- Gwoth of Z_k(t) -- Transitions Between Waves -- Time to the First Type \tau_k, k \ge 2 -- Application: Metastasis -- Application: Ovarian Cancer -- Application: Intratumor Heterogeneity. 
520 |a This volume develops results on continuous time branching processes and applies them to study rate of tumor growth, extending classic work on the Luria-Delbruck distribution. As a consequence, the authors calculate the probability that mutations that confer resistance to treatment are present at detection and quantify the extent of tumor heterogeneity. As applications, the authors evaluate ovarian cancer screening strategies and give rigorous proofs for results of Heano and Michor concerning tumor metastasis. These notes should be accessible to students who are familiar with Poisson processes and continuous time. Richard Durrett is mathematics professor at Duke University, USA. He is the author of 8 books, over 200 journal articles, and has supervised more than 40 Ph.D. students. Most of his current research concerns the applications of probability to biology: ecology, genetics, and most recently cancer. 
650 0 |a Mathematics. 
650 0 |a Cancer research. 
650 0 |a Probabilities. 
650 0 |a Biomathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Mathematical and Computational Biology. 
650 2 4 |a Cancer Research. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319160641 
830 0 |a Mathematical Biosciences Institute Lecture Series ;  |v 1.1 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-16065-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)