Bayesian Statistics from Methods to Models and Applications Research from BAYSM 2014 /

The Second Bayesian Young Statisticians Meeting (BAYSM 2014) and the research presented here facilitate connections among researchers using Bayesian Statistics by providing a forum for the development and exchange of ideas. WU Vienna University of Business and Economics hosted BAYSM 2014 from Septem...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Frühwirth-Schnatter, Sylvia (Επιμελητής έκδοσης), Bitto, Angela (Επιμελητής έκδοσης), Kastner, Gregor (Επιμελητής έκδοσης), Posekany, Alexandra (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Springer Proceedings in Mathematics & Statistics, 126
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04189nam a22004815i 4500
001 978-3-319-16238-6
003 DE-He213
005 20151030001324.0
007 cr nn 008mamaa
008 150519s2015 gw | s |||| 0|eng d
020 |a 9783319162386  |9 978-3-319-16238-6 
024 7 |a 10.1007/978-3-319-16238-6  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
245 1 0 |a Bayesian Statistics from Methods to Models and Applications  |h [electronic resource] :  |b Research from BAYSM 2014 /  |c edited by Sylvia Frühwirth-Schnatter, Angela Bitto, Gregor Kastner, Alexandra Posekany. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XIII, 167 p. 40 illus., 25 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1009 ;  |v 126 
505 0 |a On Bayesian based adaptive confidence sets for linear functionals -- A new finite approximation for the NGG mixture model: an application to density estimation -- Distributed Estimation of Mixture Models -- Bayesian Survival Model based on Moment Characterization -- Identifying the Infectious Period Distribution for Stochastic Epidemic Models Using the Posterior Predictive Check -- A subordinated stochastic process model -- Jeffreys priors for mixture estimation -- Bayesian Variable Selection for Generalized Linear Models Using the Power-Conditional-Expected-Posterior Prior -- A new strategy for testing cosmology with simulations -- Mixture Model for Filtering Firms' Profit Rates -- Bayesian Estimation of the Aortic Stiffness based on Non-Invasive Computed Tomography Images -- Formal and Heuristic Model Averaging Methods for Predicting the US Unemployment Rate -- Bayesian Filtering for Thermal Conductivity Estimation given Temperature Observations -- Application of Interweaving in DLMs to an Exchange and Specialization Experiment. 
520 |a The Second Bayesian Young Statisticians Meeting (BAYSM 2014) and the research presented here facilitate connections among researchers using Bayesian Statistics by providing a forum for the development and exchange of ideas. WU Vienna University of Business and Economics hosted BAYSM 2014 from September 18th to 19th. The guidance of renowned plenary lecturers and senior discussants is a critical part of the meeting and this volume, which follows publication of contributions from BAYSM 2013. The meeting's scientific program reflected the variety of fields in which Bayesian methods are currently employed or could be introduced in the future. Three brilliant keynote lectures by Chris Holmes (University of Oxford), Christian Robert (Université Paris-Dauphine), and Mike West (Duke University), were complemented by 24 plenary talks covering the major topics Dynamic Models, Applications, Bayesian Nonparametrics, Biostatistics, Bayesian Methods in Economics, and Models and Methods, as well as a lively poster session with 30 contributions. Selected contributions have been drawn from the conference for this book. All contributions in this volume are peer-reviewed and share original research in Bayesian computation, application, and theory. 
650 0 |a Statistics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Statistics for Business/Economics/Mathematical Finance/Insurance. 
650 2 4 |a Statistics and Computing/Statistics Programs. 
700 1 |a Frühwirth-Schnatter, Sylvia.  |e editor. 
700 1 |a Bitto, Angela.  |e editor. 
700 1 |a Kastner, Gregor.  |e editor. 
700 1 |a Posekany, Alexandra.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319162379 
830 0 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1009 ;  |v 126 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-16238-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)