Proof Patterns

This innovative textbook introduces a new pattern-based approach to learning proof methods in the mathematical sciences. Readers will discover techniques that will enable them to learn new proofs across different areas of pure mathematics with ease. The patterns in proofs from diverse fields such as...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Joshi, Mark (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03114nam a22005415i 4500
001 978-3-319-16250-8
003 DE-He213
005 20151204143514.0
007 cr nn 008mamaa
008 150317s2015 gw | s |||| 0|eng d
020 |a 9783319162508  |9 978-3-319-16250-8 
024 7 |a 10.1007/978-3-319-16250-8  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
100 1 |a Joshi, Mark.  |e author. 
245 1 0 |a Proof Patterns  |h [electronic resource] /  |c by Mark Joshi. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XIII, 190 p. 24 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Induction and complete induction -- Double Counting -- The pigeonhole principle -- Divisions -- Contrapositive and contradiction -- Intersection-enclosure and Generation -- Difference of invariants -- Linear dependence, fields and transcendence -- Formal equivalence -- Equivalence extension -- Proof by classification -- Specific-generality -- Diagonal tricks and cardinality -- Connectedness and the Jordan curve theorem -- The Euler characteristic and the classification of regular polyhedra -- Discharging -- The matching problem -- Games -- Analytical patterns -- Counterexamples. 
520 |a This innovative textbook introduces a new pattern-based approach to learning proof methods in the mathematical sciences. Readers will discover techniques that will enable them to learn new proofs across different areas of pure mathematics with ease. The patterns in proofs from diverse fields such as algebra, analysis, topology and number theory are explored. Specific topics examined include game theory, combinatorics, and Euclidean geometry, enabling a broad familiarity. The author, an experienced lecturer and researcher renowned for his innovative view and intuitive style, illuminates a wide range of techniques and examples from duplicating the cube to triangulating polygons to the infinitude of primes to the fundamental theorem of algebra. Intended as a companion for undergraduate students, this text is an essential addition to every aspiring mathematician’s toolkit. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Geometry. 
650 0 |a Number theory. 
650 0 |a Topology. 
650 0 |a Combinatorics. 
650 0 |a Mathematics  |x Study and teaching. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a Geometry. 
650 2 4 |a Combinatorics. 
650 2 4 |a Analysis. 
650 2 4 |a Topology. 
650 2 4 |a Mathematics Education. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319162492 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-16250-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)