Geometric Continuum Mechanics and Induced Beam Theories

This research monograph discusses novel approaches to geometric continuum mechanics and introduces beams as constraint continuous bodies. In the coordinate free and metric independent geometric formulation of continuum mechanics as well as for beam theories, the principle of virtual work serves as t...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: R. Eugster, Simon (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Lecture Notes in Applied and Computational Mechanics, 75
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02860nam a22005055i 4500
001 978-3-319-16495-3
003 DE-He213
005 20151204143819.0
007 cr nn 008mamaa
008 150319s2015 gw | s |||| 0|eng d
020 |a 9783319164953  |9 978-3-319-16495-3 
024 7 |a 10.1007/978-3-319-16495-3  |2 doi 
040 |d GrThAP 
050 4 |a TA405-409.3 
050 4 |a QA808.2 
072 7 |a TG  |2 bicssc 
072 7 |a TEC009070  |2 bisacsh 
072 7 |a TEC021000  |2 bisacsh 
082 0 4 |a 620.1  |2 23 
100 1 |a R. Eugster, Simon.  |e author. 
245 1 0 |a Geometric Continuum Mechanics and Induced Beam Theories  |h [electronic resource] /  |c by Simon R. Eugster. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a IX, 146 p. 12 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Applied and Computational Mechanics,  |x 1613-7736 ;  |v 75 
505 0 |a Introduction -- Part I Geometric Continuum Mechanics -- Part II Induced Beam Theories. 
520 |a This research monograph discusses novel approaches to geometric continuum mechanics and introduces beams as constraint continuous bodies. In the coordinate free and metric independent geometric formulation of continuum mechanics as well as for beam theories, the principle of virtual work serves as the fundamental principle of mechanics. Based on the perception of analytical mechanics that forces of a mechanical system are defined as dual quantities to the kinematical description, the virtual work approach is a systematic way to treat arbitrary mechanical systems. Whereas this methodology is very convenient to formulate induced beam theories, it is essential in geometric continuum mechanics when the assumptions on the physical space are relaxed and the space is modeled as a smooth manifold. The book addresses researcher and graduate students in engineering and mathematics interested in recent developments of a geometric formulation of continuum mechanics and a hierarchical development of induced beam theories. 
650 0 |a Engineering. 
650 0 |a Continuum physics. 
650 0 |a Continuum mechanics. 
650 0 |a Structural mechanics. 
650 1 4 |a Engineering. 
650 2 4 |a Continuum Mechanics and Mechanics of Materials. 
650 2 4 |a Classical Continuum Physics. 
650 2 4 |a Structural Mechanics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319164946 
830 0 |a Lecture Notes in Applied and Computational Mechanics,  |x 1613-7736 ;  |v 75 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-16495-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)