Artificial Intelligent Approaches in Petroleum Geosciences

This book presents several intelligent approaches for tackling and solving challenging practical problems facing those in the petroleum geosciences and petroleum industry. Written by experienced academics, this book offers state-of-the-art working examples and provides the reader with exposure to th...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Cranganu, Constantin (Επιμελητής έκδοσης), Luchian, Henri (Επιμελητής έκδοσης), Breaban, Mihaela Elena (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04734nam a22005415i 4500
001 978-3-319-16531-8
003 DE-He213
005 20151204183504.0
007 cr nn 008mamaa
008 150418s2015 gw | s |||| 0|eng d
020 |a 9783319165318  |9 978-3-319-16531-8 
024 7 |a 10.1007/978-3-319-16531-8  |2 doi 
040 |d GrThAP 
050 4 |a TJ163.13-163.25 
050 4 |a TP315-360 
072 7 |a THF  |2 bicssc 
072 7 |a TEC031030  |2 bisacsh 
082 0 4 |a 662.6  |2 23 
245 1 0 |a Artificial Intelligent Approaches in Petroleum Geosciences  |h [electronic resource] /  |c edited by Constantin Cranganu, Henri Luchian, Mihaela Elena Breaban. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XII, 290 p. 126 illus., 81 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Intelligent Data Analysis Techniques – Machine Learning and Data Mining -- On meta-heuristics in optimization and data analysis. Application to geosciences -- Genetic Programming Techniques with Applications in the Oil and Gas Industry -- Application of Artificial Neural Networks in Geoscience and Petroleum Industry -- On Support Vector Regression to Predict Poisson’s Ratio and Young’s Modulus of Reservoir Rock -- Use of Active Learning Method to determine the presence and estimate the magnitude of abnormally pressured fluid zones: A case study from the Anadarko Basin, Oklahoma -- Active Learning Method for estimating missing logs in hydrocarbon reservoirs -- Improving the accuracy of Active Learning Method via noise injection for estimating hydraulic flow units: An example from a heterogeneous carbonate reservoir -- Well log analysis by global optimization-based interval inversion method -- Permeability estimation in petroleum reservoir by artificial intelligent methods: An overview. 
520 |a This book presents several intelligent approaches for tackling and solving challenging practical problems facing those in the petroleum geosciences and petroleum industry. Written by experienced academics, this book offers state-of-the-art working examples and provides the reader with exposure to the latest developments in the field of intelligent methods applied to oil and gas research, exploration and production. It also analyzes the strengths and weaknesses of each method presented using benchmarking, whilst also emphasizing essential parameters such as robustness, accuracy, speed of convergence, computer time, overlearning and the role of normalization. The intelligent approaches presented include artificial neural networks, fuzzy logic, active learning method, genetic algorithms and support vector machines, amongst others. Integration, handling data of immense size and uncertainty, and dealing with risk management are among crucial issues in petroleum geosciences. The problems we have to solve in this domain are becoming too complex to rely on a single discipline for effective solutions, and the costs associated with poor predictions (e.g. dry holes) increase. Therefore, there is a need to establish a new approach aimed at proper integration of disciplines (such as petroleum engineering, geology, geophysics, and geochemistry), data fusion, risk reduction, and uncertainty management. These intelligent techniques can be used for uncertainty analysis, risk assessment, data fusion and mining, data analysis and interpretation, and knowledge discovery, from diverse data such as 3-D seismic, geological data, well logging, and production data. This book is intended for petroleum scientists, data miners, data scientists and professionals and post-graduate students involved in petroleum industry. 
650 0 |a Energy. 
650 0 |a Fossil fuels. 
650 0 |a Mineral resources. 
650 0 |a Geotechnical engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Mathematical models. 
650 1 4 |a Energy. 
650 2 4 |a Fossil Fuels (incl. Carbon Capture). 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Geotechnical Engineering & Applied Earth Sciences. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Mineral Resources. 
700 1 |a Cranganu, Constantin.  |e editor. 
700 1 |a Luchian, Henri.  |e editor. 
700 1 |a Breaban, Mihaela Elena.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319165301 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-16531-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENE 
950 |a Energy (Springer-40367)