The Mathematics of Networks of Linear Systems

This book provides the mathematical foundations of networks of linear control systems, developed from an algebraic systems theory perspective. This includes a thorough treatment of questions of controllability, observability, realization theory, as well as feedback control and observer theory. The p...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Fuhrmann, Paul A. (Συγγραφέας), Helmke, Uwe (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Universitext,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03267nam a22005055i 4500
001 978-3-319-16646-9
003 DE-He213
005 20151106071228.0
007 cr nn 008mamaa
008 150526s2015 gw | s |||| 0|eng d
020 |a 9783319166469  |9 978-3-319-16646-9 
024 7 |a 10.1007/978-3-319-16646-9  |2 doi 
040 |d GrThAP 
050 4 |a QA184-205 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002050  |2 bisacsh 
082 0 4 |a 512.5  |2 23 
100 1 |a Fuhrmann, Paul A.  |e author. 
245 1 4 |a The Mathematics of Networks of Linear Systems  |h [electronic resource] /  |c by Paul A. Fuhrmann, Uwe Helmke. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XIV, 662 p. 53 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 0172-5939 
505 0 |a Introduction.-Rings and Modules of Polynomials -- Functional Models and Shift Spaces -- Linear Systems -- Tensor Products, Bezoutians and Stability.-State Feedback and Output Injection.-Observer Theory -- Nonnegative Matrices and Graph Theory -- Interconnected Systems.-Control of Standard Interconnections -- Synchronization and Consensus -- Control of Ensembles -- References -- Index. 
520 |a This book provides the mathematical foundations of networks of linear control systems, developed from an algebraic systems theory perspective. This includes a thorough treatment of questions of controllability, observability, realization theory, as well as feedback control and observer theory. The potential of networks for linear systems in controlling large-scale networks of interconnected dynamical systems could provide insight into a diversity of scientific and technological disciplines. The scope of the book is quite extensive, ranging from introductory material to advanced topics of current research, making it a suitable reference for graduate students and researchers in the field of networks of linear systems. Part I can be used as the basis for a first course in algebraic system theory, while Part II serves for a second, advanced, course on linear systems. Finally, Part III, which is largely independent of the previous parts, is ideally suited for advanced research seminars aimed at preparing graduate students for independent research. “Mathematics of Networks of Linear Systems” contains a large number of exercises and examples throughout the text making it suitable for graduate courses in the area. 
650 0 |a Mathematics. 
650 0 |a Matrix theory. 
650 0 |a Algebra. 
650 0 |a System theory. 
650 0 |a Control engineering. 
650 1 4 |a Mathematics. 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory. 
650 2 4 |a Systems Theory, Control. 
650 2 4 |a Control. 
700 1 |a Helmke, Uwe.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319166452 
830 0 |a Universitext,  |x 0172-5939 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-16646-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)