Heavy-Tailed Distributions and Robustness in Economics and Finance

This book focuses on general frameworks for modeling heavy-tailed distributions in economics, finance, econometrics, statistics, risk management and insurance. A central theme is that of (non-)robustness, i.e., the fact that the presence of heavy tails can either reinforce or reverse the implication...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Ibragimov, Marat (Συγγραφέας), Ibragimov, Rustam (Συγγραφέας), Walden, Johan (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Lecture Notes in Statistics, 214
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02495nam a22004935i 4500
001 978-3-319-16877-7
003 DE-He213
005 20151030111259.0
007 cr nn 008mamaa
008 150523s2015 gw | s |||| 0|eng d
020 |a 9783319168777  |9 978-3-319-16877-7 
024 7 |a 10.1007/978-3-319-16877-7  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a K  |2 bicssc 
072 7 |a BUS061000  |2 bisacsh 
082 0 4 |a 330.015195  |2 23 
100 1 |a Ibragimov, Marat.  |e author. 
245 1 0 |a Heavy-Tailed Distributions and Robustness in Economics and Finance  |h [electronic resource] /  |c by Marat Ibragimov, Rustam Ibragimov, Johan Walden. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XIV, 119 p. 9 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Statistics,  |x 0930-0325 ;  |v 214 
505 0 |a Introduction -- Implications of Heavy-tailed ness -- Inference and Empirical Examples -- Conclusion. 
520 |a This book focuses on general frameworks for modeling heavy-tailed distributions in economics, finance, econometrics, statistics, risk management and insurance. A central theme is that of (non-)robustness, i.e., the fact that the presence of heavy tails can either reinforce or reverse the implications of a number of models in these fields, depending on the degree of heavy-tailedness. These results motivate the development and applications of robust inference approaches under heavy tails, heterogeneity and dependence in observations. Several recently developed robust inference approaches are discussed and illustrated, together with applications. 
650 0 |a Statistics. 
650 0 |a Econometrics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistics for Business/Economics/Mathematical Finance/Insurance. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Econometrics. 
700 1 |a Ibragimov, Rustam.  |e author. 
700 1 |a Walden, Johan.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319168760 
830 0 |a Lecture Notes in Statistics,  |x 0930-0325 ;  |v 214 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-16877-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)