Operator Theoretic Aspects of Ergodic Theory
Stunning recent results by Host–Kra, Green–Tao, and others, highlight the timeliness of this systematic introduction to classical ergodic theory using the tools of operator theory. Assuming no prior exposure to ergodic theory, this book provides a modern foundation for introductory courses on ergodi...
Κύριοι συγγραφείς: | , , , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2015.
|
Έκδοση: | 1st ed. 2015. |
Σειρά: | Graduate Texts in Mathematics,
272 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- What is Ergodic Theory?
- Topological Dynamical Systems
- Minimality and Recurrence
- The C*-algebra C(K) and the Koopman Operator
- Measure-Preserving Systems
- Recurrence and Ergodicity
- The Banach Lattice Lp and the Koopman Operator
- The Mean Ergodic Theorem
- Mixing Dynamical Systems
- Mean Ergodic Operators on C(K)
- The Pointwise Ergodic Theorem
- Isomorphisms and Topological Models
- Markov Operators
- Compact Semigroups and Groups
- Topological Dynamics Revisited
- The Jacobs–de Leeuw–Glicksberg Decomposition
- Dynamical Systems with Discrete Spectrum
- A Glimpse at Arithmetic Progressions
- Joinings
- The Host–Kra– Tao Theorem
- More Ergodic Theorems
- Appendix A: Topology
- Appendix B: Measure and Integration Theory.- Appendix C: Functional Analysis
- Appendix D: The Riesz Representation Theorem
- Appendix E: Theorems of Eberlein, Grothendieck, and Ellis.