Topology

This is an introductory textbook on general and algebraic topology, aimed at anyone with a basic knowledge of calculus and linear algebra. It provides full proofs and includes many examples and exercises. The covered topics include: set theory and cardinal arithmetic; axiom of choice and Zorn's...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Manetti, Marco (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:UNITEXT, 91
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02880nam a22004455i 4500
001 978-3-319-16958-3
003 DE-He213
005 20150528073852.0
007 cr nn 008mamaa
008 150528s2015 gw | s |||| 0|eng d
020 |a 9783319169583  |9 978-3-319-16958-3 
024 7 |a 10.1007/978-3-319-16958-3  |2 doi 
040 |d GrThAP 
050 4 |a QA612-612.8 
072 7 |a PBPD  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 514.2  |2 23 
100 1 |a Manetti, Marco.  |e author. 
245 1 0 |a Topology  |h [electronic resource] /  |c by Marco Manetti. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XII, 309 p. 72 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a UNITEXT,  |x 2038-5714 ;  |v 91 
505 0 |a 1 Geometrical introduction to topology -- 2 Sets -- 3 Topological structures -- 4 Connectedness and compactness -- 5 Topological quotients -- 6 Sequences -- 7 Manifolds, infinite products and paracompactness -- 8 More topics in general topology -- 9 Intermezzo -- Homotopy -- 10 The fundamental group -- 11 Covering spaces -- Monodromy -- 12 van Kampen's theorem -- 13 Selected topics in algebraic topology -- 14 Hints and solutions -- 15 References -- 16 Index. 
520 |a This is an introductory textbook on general and algebraic topology, aimed at anyone with a basic knowledge of calculus and linear algebra. It provides full proofs and includes many examples and exercises. The covered topics include: set theory and cardinal arithmetic; axiom of choice and Zorn's lemma; topological spaces and continuous functions; connectedness and compactness; Alexandrov compactification; quotient topologies; countability and separation axioms; prebasis and Alexander's theorem; the Tychonoff theorem and paracompactness; complete metric spaces and function spaces; Baire spaces; homotopy of maps; the fundamental group; the van Kampen theorem; covering spaces; Brouwer and Borsuk's theorems; free groups and free product of groups; and basic category theory. While it is very concrete at the beginning, abstract concepts are gradually introduced. It is suitable for anyone needing a basic, comprehensive introduction to general and algebraic topology and its applications. 
650 0 |a Mathematics. 
650 0 |a Algebraic topology. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Topology. 
650 2 4 |a Mathematics, general. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319169576 
830 0 |a UNITEXT,  |x 2038-5714 ;  |v 91 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-16958-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)