Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and their Applications

The theoretical part of this monograph examines the distribution of the spectrum of operator polynomials, focusing on quadratic operator polynomials with discrete spectra. The second part is devoted to applications. Standard spectral problems in Hilbert spaces are of the form A-λI for an operator A,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Möller, Manfred (Συγγραφέας), Pivovarchik, Vyacheslav (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2015.
Σειρά:Operator Theory: Advances and Applications, 246
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04191nam a22004935i 4500
001 978-3-319-17070-1
003 DE-He213
005 20151204185820.0
007 cr nn 008mamaa
008 150611s2015 gw | s |||| 0|eng d
020 |a 9783319170701  |9 978-3-319-17070-1 
024 7 |a 10.1007/978-3-319-17070-1  |2 doi 
040 |d GrThAP 
050 4 |a QA329-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.724  |2 23 
100 1 |a Möller, Manfred.  |e author. 
245 1 0 |a Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and their Applications  |h [electronic resource] /  |c by Manfred Möller, Vyacheslav Pivovarchik. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2015. 
300 |a XVII, 412 p. 11 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Operator Theory: Advances and Applications,  |x 0255-0156 ;  |v 246 
505 0 |a Preface -- Part I: Operator Pencils -- 1.Quadratic Operator Pencils -- 2.Applications of Quadratic Operator Pencils -- 3.Operator Pencils with Essential Spectrum -- 4.Operator Pencils with a Gyroscopic Term -- Part II: Hermite–Biehler Functions -- 5.Generalized Hermite–Biehler Functions -- 6.Applications of Shifted Hermite–Biehler Functions -- Part III: Direct and Inverse Problems -- 7.Eigenvalue Asymptotics -- 8.Inverse Problems -- Part IV: Background Material -- 9.Spectral Dependence on a Parameter -- 10.Sobolev Spaces and Differential Operators -- 11.Analytic and Meromorphic Functions -- 12.Inverse Sturm–Liouville Problems -- Bibliography -- Index -- Index of Notation. 
520 |a The theoretical part of this monograph examines the distribution of the spectrum of operator polynomials, focusing on quadratic operator polynomials with discrete spectra. The second part is devoted to applications. Standard spectral problems in Hilbert spaces are of the form A-λI for an operator A, and self-adjoint operators are of particular interest and importance, both theoretically and in terms of applications. A characteristic feature of self-adjoint operators is that their spectra are real, and many spectral problems in theoretical physics and engineering can be described by using them. However, a large class of problems, in particular vibration problems with boundary conditions depending on the spectral parameter, are represented by operator polynomials that are quadratic in the eigenvalue parameter and whose coefficients are self-adjoint operators. The spectra of such operator polynomials are in general no more real, but still exhibit certain patterns. The distribution of these spectra is the main focus of the present volume. For some classes of quadratic operator polynomials, inverse problems are also considered. The connection between the spectra of such quadratic operator polynomials and generalized Hermite-Biehler functions is discussed in detail. Many applications are thoroughly investigated, such as the Regge problem and damped vibrations of smooth strings, Stieltjes strings, beams, star graphs of strings and quantum graphs. Some chapters summarize advanced background material, which is supplemented with detailed proofs. With regard to the reader’s background knowledge, only the basic properties of operators in Hilbert spaces and well-known results from complex analysis are assumed. 
650 0 |a Mathematics. 
650 0 |a Operator theory. 
650 0 |a Differential equations. 
650 0 |a Mathematical physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Operator Theory. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Mathematical Physics. 
700 1 |a Pivovarchik, Vyacheslav.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319170695 
830 0 |a Operator Theory: Advances and Applications,  |x 0255-0156 ;  |v 246 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-17070-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)