Language Identification Using Spectral and Prosodic Features

This book discusses the impact of spectral features extracted from frame level, glottal closure regions, and pitch-synchronous analysis on the performance of language identification systems. In addition to spectral features, the authors explore prosodic features such as intonation, rhythm, and stres...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Rao, K. Sreenivasa (Συγγραφέας), Reddy, V. Ramu (Συγγραφέας), Maity, Sudhamay (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:SpringerBriefs in Electrical and Computer Engineering,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03220nam a22005295i 4500
001 978-3-319-17163-0
003 DE-He213
005 20151204183001.0
007 cr nn 008mamaa
008 150331s2015 gw | s |||| 0|eng d
020 |a 9783319171630  |9 978-3-319-17163-0 
024 7 |a 10.1007/978-3-319-17163-0  |2 doi 
040 |d GrThAP 
050 4 |a TK5102.9 
050 4 |a TA1637-1638 
050 4 |a TK7882.S65 
072 7 |a TTBM  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a COM073000  |2 bisacsh 
082 0 4 |a 621.382  |2 23 
100 1 |a Rao, K. Sreenivasa.  |e author. 
245 1 0 |a Language Identification Using Spectral and Prosodic Features  |h [electronic resource] /  |c by K. Sreenivasa Rao, V. Ramu Reddy, Sudhamay Maity. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XI, 98 p. 21 illus., 5 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8112 
505 0 |a  Introduction.- Literature Review -- Language Identification using Spectral Features -- Language Identification using Prosodic Features -- Summary and Conclusions -- Appendix A: LPCC Features -- Appendix B: MFCC Features --  Appendix C: Gaussian Mixture Model (GMM). 
520 |a This book discusses the impact of spectral features extracted from frame level, glottal closure regions, and pitch-synchronous analysis on the performance of language identification systems. In addition to spectral features, the authors explore prosodic features such as intonation, rhythm, and stress features for discriminating the languages. They present how the proposed spectral and prosodic features capture the language specific information from two complementary aspects, showing how the development of language identification (LID) system using the combination of spectral and prosodic features will enhance the accuracy of identification as well as improve the robustness of the system. This book provides the methods to extract the spectral and prosodic features at various levels, and also suggests the appropriate models for developing robust LID systems according to specific spectral and prosodic features. Finally, the book discuss about various combinations of spectral and prosodic features, and the desired models to enhance the performance of LID systems. 
650 0 |a Engineering. 
650 0 |a Computational linguistics. 
650 1 4 |a Engineering. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Language Translation and Linguistics. 
650 2 4 |a Computational Linguistics. 
700 1 |a Reddy, V. Ramu.  |e author. 
700 1 |a Maity, Sudhamay.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319171623 
830 0 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8112 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-17163-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)