Machine Learning in Complex Networks

This book explores the features and advantages offered by complex networks in the domain of machine learning. In the first part of the book, we present an overview on complex networks and machine learning. Then, we provide a comprehensive description on network-based machine learning. In addition, w...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Christiano Silva, Thiago (Συγγραφέας), Zhao, Liang (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Έκδοση:1st ed. 2016.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04437nam a22005775i 4500
001 978-3-319-17290-3
003 DE-He213
005 20160128201033.0
007 cr nn 008mamaa
008 160128s2016 gw | s |||| 0|eng d
020 |a 9783319172903  |9 978-3-319-17290-3 
024 7 |a 10.1007/978-3-319-17290-3  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Christiano Silva, Thiago.  |e author. 
245 1 0 |a Machine Learning in Complex Networks  |h [electronic resource] /  |c by Thiago Christiano Silva, Liang Zhao. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XVIII, 331 p. 87 illus., 80 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Complex Networks -- Machine Learning -- Network Construction Techniques -- Network-Based Supervised Learning -- Network-Based Unsupervised Learning -- Network-Based Semi-Supervised Learning -- Case Study of Network-Based Supervised Learning: High-Level Data Classification -- Case Study of Network-Based Unsupervised Learning: Stochastic Competitive Learning in Networks -- Case Study of Network-Based Semi-Supervised Learning: Stochastic Competitive-Cooperative Learning in Networks. 
520 |a This book explores the features and advantages offered by complex networks in the domain of machine learning. In the first part of the book, we present an overview on complex networks and machine learning. Then, we provide a comprehensive description on network-based machine learning. In addition, we also address the important network construction issue. In the second part of the book, we describe some techniques for supervised, unsupervised, and semi-supervised learning that rely on complex networks to perform the learning process. Particularly, we thoroughly investigate a particle competition technique for both unsupervised and semi-supervised learning that is modeled using a stochastic nonlinear dynamical system. Moreover, we supply an analytical analysis of the model, which enables one to predict the behavior of the proposed technique. In addition, we deal with data reliability issues or imperfect data in semi-supervised learning. Even though with relevant practical importance, little research is found about this topic in the literature. In order to validate these techniques, we employ broadly accepted real-world and artificial data sets. Regarding network-based supervised learning, we present a hybrid data classification technique that combines both low and high orders of learning. The low-level term can be implemented by any traditional classification technique, while the high-level term is realized by the extraction of topological features of the underlying network constructed from the input data. Thus, the former classifies test instances according to their physical features, while the latter measures the compliance of test instances with the pattern formation of the data. We show that the high-level technique can realize classification according to the semantic meaning of the data. This book intends to combine two widely studied research areas, machine learning and complex networks, which in turn may generate broad interests to scientific community, mainly to computer science and engineering areas. 
650 0 |a Computer science. 
650 0 |a Science. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 0 |a Pattern recognition. 
650 0 |a Physics. 
650 0 |a Computational intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Complex Networks. 
650 2 4 |a Science, general. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Pattern Recognition. 
700 1 |a Zhao, Liang.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319172897 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-17290-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)