Why Prove it Again? Alternative Proofs in Mathematical Practice /

This monograph considers several well-known mathematical theorems and asks the question, “Why prove it again?” while examining alternative proofs.   It  explores the different rationales mathematicians may have for pursuing and presenting new proofs of previously established results, as well as how...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Dawson, Jr., John W. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2015.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03434nam a22005175i 4500
001 978-3-319-17368-9
003 DE-He213
005 20151104183037.0
007 cr nn 008mamaa
008 150715s2015 gw | s |||| 0|eng d
020 |a 9783319173689  |9 978-3-319-17368-9 
024 7 |a 10.1007/978-3-319-17368-9  |2 doi 
040 |d GrThAP 
050 4 |a QA21-27 
072 7 |a PBX  |2 bicssc 
072 7 |a MAT015000  |2 bisacsh 
082 0 4 |a 510.9  |2 23 
100 1 |a Dawson, Jr., John W.  |e author. 
245 1 0 |a Why Prove it Again?  |h [electronic resource] :  |b Alternative Proofs in Mathematical Practice /  |c by John W. Dawson, Jr. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2015. 
300 |a XI, 204 p. 54 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Proofs in Mathematical Practice -- Motives for Finding Alternative Proofs -- Sums of Integers -- Quadratic Surds -- The Pythagorean Theorem -- The Fundamental Theorem of Arithmetic -- The Infinitude of the Primes -- The Fundamental Theorem of Algebra -- Desargues's Theorem -- The Prime Number Theorem -- The Irreducibility of the Cyclotomic Polynomials -- The Compactness of First-Order Languages -- Other Case Studies. 
520 |a This monograph considers several well-known mathematical theorems and asks the question, “Why prove it again?” while examining alternative proofs.   It  explores the different rationales mathematicians may have for pursuing and presenting new proofs of previously established results, as well as how they judge whether two proofs of a given result are different.  While a number of books have examined alternative proofs of individual theorems, this is the first that presents comparative case studies of other methods for a variety of different theorems. The author begins by laying out the criteria for distinguishing among proofs and enumerates reasons why new proofs have, for so long, played a prominent role in mathematical practice.  He then outlines various purposes that alternative proofs may serve.  Each chapter that follows provides a detailed case study of alternative proofs for particular theorems, including the Pythagorean Theorem, the Fundamental Theorem of Arithmetic, Desargues’ Theorem, the Prime Number Theorem, and the proof of the irreducibility of cyclotomic polynomials. Why Prove It Again? will appeal to a broad range of readers, including historians and philosophers of mathematics, students, and practicing mathematicians.  Additionally, teachers will find it to be a useful source of alternative methods of presenting material to their students. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Geometry. 
650 0 |a History. 
650 0 |a Topology. 
650 1 4 |a Mathematics. 
650 2 4 |a History of Mathematical Sciences. 
650 2 4 |a Geometry. 
650 2 4 |a Algebra. 
650 2 4 |a Analysis. 
650 2 4 |a Topology. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319173672 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-17368-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)