Integral Transform Techniques for Green's Function

This book describes mathematical techniques for integral transforms in a detailed but concise manner. The techniques are subsequently applied to the standard partial differential equations, such as the Laplace equation, the wave equation and elasticity equations. Green’s functions for beams, plates...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Watanabe, Kazumi (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Έκδοση:2nd ed. 2015.
Σειρά:Lecture Notes in Applied and Computational Mechanics, 76
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03065nam a22005415i 4500
001 978-3-319-17455-6
003 DE-He213
005 20151030101424.0
007 cr nn 008mamaa
008 150417s2015 gw | s |||| 0|eng d
020 |a 9783319174556  |9 978-3-319-17455-6 
024 7 |a 10.1007/978-3-319-17455-6  |2 doi 
040 |d GrThAP 
050 4 |a TA329-348 
050 4 |a TA640-643 
072 7 |a TBJ  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Watanabe, Kazumi.  |e author. 
245 1 0 |a Integral Transform Techniques for Green's Function  |h [electronic resource] /  |c by Kazumi Watanabe. 
250 |a 2nd ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XIV, 264 p. 53 illus., 26 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Applied and Computational Mechanics,  |x 1613-7736 ;  |v 76 
505 0 |a Definition of integral transforms and distributions -- Green's functions for Laplace and wave equations -- Green's dyadic for an isotropic elastic solid -- Acoustic wave in an uniform flow -- Green's functions for beam and plate -- Cagniard de Hoop technique -- Miscellaneous Green's functions -- Exercises. 
520 |a This book describes mathematical techniques for integral transforms in a detailed but concise manner. The techniques are subsequently applied to the standard partial differential equations, such as the Laplace equation, the wave equation and elasticity equations. Green’s functions for beams, plates and acoustic media are also shown, along with their mathematical derivations. The Cagniard-de Hoop method for double inversion is described in detail, and 2D and 3D elastodynamic problems are treated in full. This new edition explains in detail how to introduce the branch cut for the multi-valued square root function. Further, an exact closed form Green’s function for torsional waves is presented, as well as an application technique of the complex integral, which includes the square root function and an application technique of the complex integral. 
650 0 |a Engineering. 
650 0 |a Integral transforms. 
650 0 |a Operational calculus. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Mechanics. 
650 0 |a Mechanics, Applied. 
650 1 4 |a Engineering. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Theoretical and Applied Mechanics. 
650 2 4 |a Integral Transforms, Operational Calculus. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319174549 
830 0 |a Lecture Notes in Applied and Computational Mechanics,  |x 1613-7736 ;  |v 76 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-17455-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)