Period Mappings with Applications to Symplectic Complex Spaces

Extending Griffiths’ classical theory of period mappings for compact Kähler manifolds, this book develops and applies a theory of period mappings of “Hodge-de Rham type” for families of open complex manifolds. The text consists of three parts. The first part develops the theory. The second part inve...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kirschner, Tim (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Έκδοση:1st ed. 2015.
Σειρά:Lecture Notes in Mathematics, 2140
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02562nam a22005055i 4500
001 978-3-319-17521-8
003 DE-He213
005 20151123192525.0
007 cr nn 008mamaa
008 150915s2015 gw | s |||| 0|eng d
020 |a 9783319175218  |9 978-3-319-17521-8 
024 7 |a 10.1007/978-3-319-17521-8  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
100 1 |a Kirschner, Tim.  |e author. 
245 1 0 |a Period Mappings with Applications to Symplectic Complex Spaces  |h [electronic resource] /  |c by Tim Kirschner. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XVIII, 275 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2140 
520 |a Extending Griffiths’ classical theory of period mappings for compact Kähler manifolds, this book develops and applies a theory of period mappings of “Hodge-de Rham type” for families of open complex manifolds. The text consists of three parts. The first part develops the theory. The second part investigates the degeneration behavior of the relative Frölicher spectral sequence associated to a submersive morphism of complex manifolds. The third part applies the preceding material to the study of irreducible symplectic complex spaces. The latter notion generalizes the idea of an irreducible symplectic manifold, dubbed an irreducible hyperkähler manifold in differential geometry, to possibly singular spaces. The three parts of the work are of independent interest, but intertwine nicely. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Category theory (Mathematics). 
650 0 |a Homological algebra. 
650 0 |a Functions of complex variables. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
650 2 4 |a Category Theory, Homological Algebra. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319175201 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2140 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-17521-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)