Minimum Action Curves in Degenerate Finsler Metrics Existence and Properties /

Presenting a study of geometric action functionals (i.e., non-negative functionals on the space of unparameterized oriented rectifiable curves), this monograph focuses on the subclass of those functionals whose local action is a degenerate type of Finsler metric that may vanish in certain directions...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Heymann, Matthias (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Lecture Notes in Mathematics, 2134
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02834nam a22005175i 4500
001 978-3-319-17753-3
003 DE-He213
005 20151204181723.0
007 cr nn 008mamaa
008 150708s2015 gw | s |||| 0|eng d
020 |a 9783319177533  |9 978-3-319-17753-3 
024 7 |a 10.1007/978-3-319-17753-3  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Heymann, Matthias.  |e author. 
245 1 0 |a Minimum Action Curves in Degenerate Finsler Metrics  |h [electronic resource] :  |b Existence and Properties /  |c by Matthias Heymann. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XV, 186 p. 14 illus., 11 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2134 
520 |a Presenting a study of geometric action functionals (i.e., non-negative functionals on the space of unparameterized oriented rectifiable curves), this monograph focuses on the subclass of those functionals whose local action is a degenerate type of Finsler metric that may vanish in certain directions, allowing for curves with positive Euclidean length but with zero action. For such functionals, criteria are developed under which there exists a minimum action curve leading from one given set to another. Then the properties of this curve are studied, and the non-existence of minimizers is established in some settings. Applied to a geometric reformulation of the quasipotential of Wentzell-Freidlin theory (a subfield of large deviation theory), these results can yield the existence and properties of maximum likelihood transition curves between two metastable states in a stochastic process with small noise. The book assumes only standard knowledge in graduate-level analysis; all higher-level mathematical concepts are introduced along the way.  . 
650 0 |a Mathematics. 
650 0 |a Geometry. 
650 0 |a Mathematical optimization. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Geometry. 
650 2 4 |a Optimization. 
650 2 4 |a Mathematics, general. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319177526 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2134 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-17753-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)