Real Mathematical Analysis

Based on an honors course taught by the author at UC Berkeley, this introduction to undergraduate real analysis gives a different emphasis by stressing the importance of pictures and hard problems. Topics include: a natural construction of the real numbers, four-dimensional visualization, basic poin...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Pugh, Charles C. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Έκδοση:2nd ed. 2015.
Σειρά:Undergraduate Texts in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03453nam a22004935i 4500
001 978-3-319-17771-7
003 DE-He213
005 20151116134918.0
007 cr nn 008mamaa
008 150729s2015 gw | s |||| 0|eng d
020 |a 9783319177717  |9 978-3-319-17771-7 
024 7 |a 10.1007/978-3-319-17771-7  |2 doi 
040 |d GrThAP 
050 4 |a QA312-312.5 
072 7 |a PBKL  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.42  |2 23 
100 1 |a Pugh, Charles C.  |e author. 
245 1 0 |a Real Mathematical Analysis  |h [electronic resource] /  |c by Charles C. Pugh. 
250 |a 2nd ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XI, 478 p. 163 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Undergraduate Texts in Mathematics,  |x 0172-6056 
505 0 |a Real Numbers -- A Taste of Topology -- Functions of a Real Variable -- Function Spaces -- Multivariable Calculus -- Lebesgue Theory. 
520 |a Based on an honors course taught by the author at UC Berkeley, this introduction to undergraduate real analysis gives a different emphasis by stressing the importance of pictures and hard problems. Topics include: a natural construction of the real numbers, four-dimensional visualization, basic point-set topology, function spaces, multivariable calculus via differential forms (leading to a simple proof of the Brouwer Fixed Point Theorem), and a pictorial treatment of Lebesgue theory. Over 150 detailed illustrations elucidate abstract concepts and salient points in proofs. The exposition is informal and relaxed, with many helpful asides, examples, some jokes, and occasional comments from mathematicians, such as Littlewood, Dieudonné, and Osserman. This book thus succeeds in being more comprehensive, more comprehensible, and more enjoyable, than standard introductions to analysis. New to the second edition of Real Mathematical Analysis is a presentation of Lebesgue integration done almost entirely using the undergraph approach of Burkill. Payoffs include: concise picture proofs of the Monotone and Dominated Convergence Theorems, a one-line/one-picture proof of Fubini's theorem from Cavalieri’s Principle, and, in many cases, the ability to see an integral result from measure theory. The presentation includes Vitali’s Covering Lemma, density points — which are rarely treated in books at this level — and the almost everywhere differentiability of monotone functions. Several new exercises now join a collection of over 500 exercises that pose interesting challenges and introduce special topics to the student keen on mastering this beautiful subject. 
650 0 |a Mathematics. 
650 0 |a Measure theory. 
650 0 |a Functions of real variables. 
650 0 |a Sequences (Mathematics). 
650 1 4 |a Mathematics. 
650 2 4 |a Measure and Integration. 
650 2 4 |a Real Functions. 
650 2 4 |a Sequences, Series, Summability. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319177700 
830 0 |a Undergraduate Texts in Mathematics,  |x 0172-6056 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-17771-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)