Hardy Spaces on Ahlfors-Regular Quasi Metric Spaces A Sharp Theory /

Systematically building an optimal theory, this monograph develops and explores several approaches to Hardy spaces in the setting of Ahlfors-regular quasi-metric spaces. The text is broadly divided into two main parts. The first part gives atomic, molecular, and grand maximal function characterizati...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Alvarado, Ryan (Συγγραφέας), Mitrea, Marius (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Lecture Notes in Mathematics, 2142
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03646nam a22005535i 4500
001 978-3-319-18132-5
003 DE-He213
005 20151204175650.0
007 cr nn 008mamaa
008 150609s2015 gw | s |||| 0|eng d
020 |a 9783319181325  |9 978-3-319-18132-5 
024 7 |a 10.1007/978-3-319-18132-5  |2 doi 
040 |d GrThAP 
050 4 |a QA403.5-404.5 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.2433  |2 23 
100 1 |a Alvarado, Ryan.  |e author. 
245 1 0 |a Hardy Spaces on Ahlfors-Regular Quasi Metric Spaces  |h [electronic resource] :  |b A Sharp Theory /  |c by Ryan Alvarado, Marius Mitrea. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a VIII, 486 p. 17 illus., 12 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2142 
505 0 |a Introduction. - Geometry of Quasi-Metric Spaces -- Analysis on Spaces of Homogeneous Type -- Maximal Theory of Hardy Spaces -- Atomic Theory of Hardy Spaces -- Molecular and Ionic Theory of Hardy Spaces -- Further Results -- Boundedness of Linear Operators Defined on Hp(X) -- Besov and Triebel-Lizorkin Spaces on Ahlfors-Regular Quasi-Metric Spaces. 
520 |a Systematically building an optimal theory, this monograph develops and explores several approaches to Hardy spaces in the setting of Ahlfors-regular quasi-metric spaces. The text is broadly divided into two main parts. The first part gives atomic, molecular, and grand maximal function characterizations of Hardy spaces and formulates sharp versions of basic analytical tools for quasi-metric spaces, such as a Lebesgue differentiation theorem with minimal demands on the underlying measure, a maximally smooth approximation to the identity and a Calderon-Zygmund decomposition for distributions. These results are of independent interest. The second part establishes very general criteria guaranteeing that a linear operator acts continuously from a Hardy space into a topological vector space, emphasizing the role of the action of the operator on atoms. Applications include the solvability of the Dirichlet problem for elliptic systems in the upper-half space with boundary data from Hardy spaces. The tools established in the first part are then used to develop a sharp theory of Besov and Triebel-Lizorkin spaces in Ahlfors-regular quasi-metric spaces. The monograph is largely self-contained and is intended for an audience of mathematicians, graduate students and professionals with a mathematical background who are interested in the interplay between analysis and geometry. 
650 0 |a Mathematics. 
650 0 |a Fourier analysis. 
650 0 |a Functional analysis. 
650 0 |a Measure theory. 
650 0 |a Partial differential equations. 
650 0 |a Functions of real variables. 
650 1 4 |a Mathematics. 
650 2 4 |a Fourier Analysis. 
650 2 4 |a Real Functions. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Measure and Integration. 
650 2 4 |a Partial Differential Equations. 
700 1 |a Mitrea, Marius.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319181318 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2142 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-18132-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)