Bayesian Nonparametric Data Analysis

This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book’s structure follows a data analysis perspective. As such, the chapters are organized by traditional data a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Müller, Peter (Συγγραφέας), Quintana, Fernando Andres (Συγγραφέας), Jara, Alejandro (Συγγραφέας), Hanson, Tim (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Springer Series in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02836nam a22004815i 4500
001 978-3-319-18968-0
003 DE-He213
005 20151204183506.0
007 cr nn 008mamaa
008 150617s2015 gw | s |||| 0|eng d
020 |a 9783319189680  |9 978-3-319-18968-0 
024 7 |a 10.1007/978-3-319-18968-0  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Müller, Peter.  |e author. 
245 1 0 |a Bayesian Nonparametric Data Analysis  |h [electronic resource] /  |c by Peter Müller, Fernando Andres Quintana, Alejandro Jara, Tim Hanson. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XIV, 193 p. 59 illus., 10 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Statistics,  |x 0172-7397 
505 0 |a Preface -- Acronyms -- 1.Introduction -- 2.Density Estimation - DP Models -- 3.Density Estimation - Models Beyond the DP -- 4.Regression -- 5.Categorical Data -- 6.Survival Analysis -- 7.Hierarchical Models -- 8.Clustering and Feature Allocation -- 9.Other Inference Problems and Conclusions -- Appendix: DP package. 
520 |a This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book’s structure follows a data analysis perspective. As such, the chapters are organized by traditional data analysis problems. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones. The discussed methods are illustrated with a wealth of examples, including applications ranging from stylized examples to case studies from recent literature. The book also includes an extensive discussion of computational methods and details on their implementation. R code for many examples is included in on-line software pages. 
650 0 |a Statistics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Statistics and Computing/Statistics Programs. 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences. 
700 1 |a Quintana, Fernando Andres.  |e author. 
700 1 |a Jara, Alejandro.  |e author. 
700 1 |a Hanson, Tim.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319189673 
830 0 |a Springer Series in Statistics,  |x 0172-7397 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-18968-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)