Fundamentals of Hopf Algebras

This text aims to provide graduate students with a self-contained introduction to topics that are at the forefront of modern algebra, namely, coalgebras, bialgebras, and Hopf algebras.  The last chapter (Chapter 4) discusses several applications of Hopf algebras, some of which are further developed...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Underwood, Robert G. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Universitext,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03208nam a22005415i 4500
001 978-3-319-18991-8
003 DE-He213
005 20151031111135.0
007 cr nn 008mamaa
008 150610s2015 gw | s |||| 0|eng d
020 |a 9783319189918  |9 978-3-319-18991-8 
024 7 |a 10.1007/978-3-319-18991-8  |2 doi 
040 |d GrThAP 
050 4 |a QA251.5 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.46  |2 23 
100 1 |a Underwood, Robert G.  |e author. 
245 1 0 |a Fundamentals of Hopf Algebras  |h [electronic resource] /  |c by Robert G. Underwood. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XIV, 150 p. 21 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 0172-5939 
505 0 |a Preface -- Notation -- 1. Algebras and Coalgebras -- 2. Bialgebras -- 3. Hopf Algebras -- 4. Applications of Hopf Algebras -- Bibliography. 
520 |a This text aims to provide graduate students with a self-contained introduction to topics that are at the forefront of modern algebra, namely, coalgebras, bialgebras, and Hopf algebras.  The last chapter (Chapter 4) discusses several applications of Hopf algebras, some of which are further developed in the author’s 2011 publication, An Introduction to Hopf Algebras.  The book may be used as the main text or as a supplementary text for a graduate algebra course.  Prerequisites for this text include standard material on groups, rings, modules, algebraic extension fields, finite fields, and linearly recursive sequences. The book consists of four chapters. Chapter 1 introduces algebras and coalgebras over a field K; Chapter 2 treats bialgebras; Chapter 3 discusses Hopf algebras and Chapter 4 consists of three applications of Hopf algebras. Each chapter begins with a short overview and ends with a collection of exercises which are designed to review and reinforce the material. Exercises range from straightforward applications of the theory to problems that are devised to challenge the reader. Questions for further study are provided after selected exercises.  Most proofs are given in detail, though a few proofs are omitted since they are beyond the scope of this book. 
650 0 |a Mathematics. 
650 0 |a Associative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Computer mathematics. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Associative Rings and Algebras. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a Number Theory. 
650 2 4 |a Mathematical Applications in Computer Science. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319189901 
830 0 |a Universitext,  |x 0172-5939 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-18991-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)