Machine Learning Paradigms Applications in Recommender Systems /

This timely book presents Applications in Recommender Systems which are making recommendations using machine learning algorithms trained via examples of content the user likes or dislikes. Recommender systems built on the assumption of availability of both positive and negative examples do not perfo...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Lampropoulos, Aristomenis S. (Συγγραφέας), Tsihrintzis, George A. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Intelligent Systems Reference Library, 92
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03504nam a22004935i 4500
001 978-3-319-19135-5
003 DE-He213
005 20151030051302.0
007 cr nn 008mamaa
008 150613s2015 gw | s |||| 0|eng d
020 |a 9783319191355  |9 978-3-319-19135-5 
024 7 |a 10.1007/978-3-319-19135-5  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Lampropoulos, Aristomenis S.  |e author. 
245 1 0 |a Machine Learning Paradigms  |h [electronic resource] :  |b Applications in Recommender Systems /  |c by Aristomenis S. Lampropoulos, George A. Tsihrintzis. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XV, 125 p. 32 illus., 6 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Intelligent Systems Reference Library,  |x 1868-4394 ;  |v 92 
505 0 |a Introduction -- Review of Previous Work Related to Recommender Systems -- The Learning Problem.-Content Description of Multimedia Data -- Similarity Measures for Recommendations based on Objective Feature Subset Selection -- Cascade Recommendation Methods -- Evaluation of Cascade Recommendation Methods -- Conclusions and Future Work. 
520 |a This timely book presents Applications in Recommender Systems which are making recommendations using machine learning algorithms trained via examples of content the user likes or dislikes. Recommender systems built on the assumption of availability of both positive and negative examples do not perform well when negative examples are rare. It is exactly this problem that the authors address in the monograph at hand. Specifically, the books approach is based on one-class classification methodologies that have been appearing in recent machine learning research. The blending of recommender systems and one-class classification provides a new very fertile field for research, innovation and development with potential applications in “big data” as well as “sparse data” problems. The book will be useful to researchers, practitioners and graduate students dealing with problems of extensive and complex data. It is intended for both the expert/researcher in the fields of Pattern Recognition, Machine Learning and Recommender Systems, as well as for the general reader in the fields of Applied and Computer Science who wishes to learn more about the emerging discipline of Recommender Systems and their applications. Finally, the book provides an extended list of bibliographic references which covers the relevant literature completely.  . 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Computer graphics. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
700 1 |a Tsihrintzis, George A.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319191348 
830 0 |a Intelligent Systems Reference Library,  |x 1868-4394 ;  |v 92 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-19135-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)