Large-Scale Quantum-Mechanical Enzymology

This work establishes linear-scaling density-functional theory  (DFT) as a powerful tool for understanding enzyme catalysis, one that can complement quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics simulations. The thesis reviews benchmark studies demonstrating techniques capable...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Lever, Greg (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Springer Theses, Recognizing Outstanding Ph.D. Research,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03447nam a22005535i 4500
001 978-3-319-19351-9
003 DE-He213
005 20151106191217.0
007 cr nn 008mamaa
008 150606s2015 gw | s |||| 0|eng d
020 |a 9783319193519  |9 978-3-319-19351-9 
024 7 |a 10.1007/978-3-319-19351-9  |2 doi 
040 |d GrThAP 
050 4 |a QH505 
072 7 |a PHVN  |2 bicssc 
072 7 |a PHVD  |2 bicssc 
072 7 |a SCI009000  |2 bisacsh 
082 0 4 |a 571.4  |2 23 
100 1 |a Lever, Greg.  |e author. 
245 1 0 |a Large-Scale Quantum-Mechanical Enzymology  |h [electronic resource] /  |c by Greg Lever. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XVII, 148 p. 30 illus., 12 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
505 0 |a Introduction -- Proteins, Enzymes and Biological Catalysis -- Computational Techniques -- Validation Studies -- Explaining the Closure of CHOMO-LUMO Gaps in Biomolecular Systems -- A Density-Functional Perspective on the Chorismate Mutase Enzyme -- Concluding Remarks. 
520 |a This work establishes linear-scaling density-functional theory  (DFT) as a powerful tool for understanding enzyme catalysis, one that can complement quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics simulations. The thesis reviews benchmark studies demonstrating techniques capable of simulating entire enzymes at the ab initio quantum-mechanical level of accuracy. DFT has transformed the physical sciences by allowing researchers to perform parameter-free quantum-mechanical calculations to predict a broad range of physical and chemical properties of materials. In principle, similar methods could be applied to biological problems. However, even the simplest biological systems contain many thousands of atoms and are characterized by extremely complex configuration spaces associated with a vast number of degrees of freedom. The development of linear-scaling density-functional codes makes biological molecules accessible to quantum-mechanical calculation, but has yet to resolve the complexity of the phase space. Furthermore, these calculations on systems containing up to 2,000 atoms can capture contributions to the energy that are not accounted for in QM/MM methods (for which the Nobel prize in Chemistry was awarded in 2013), and the results presented here reveal profound shortcomings in said methods. 
650 0 |a Physics. 
650 0 |a Physical chemistry. 
650 0 |a Bioinformatics. 
650 0 |a Proteins. 
650 0 |a Enzymology. 
650 0 |a Biophysics. 
650 0 |a Biological physics. 
650 1 4 |a Physics. 
650 2 4 |a Biophysics and Biological Physics. 
650 2 4 |a Physical Chemistry. 
650 2 4 |a Computational Biology/Bioinformatics. 
650 2 4 |a Protein Science. 
650 2 4 |a Enzymology. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319193502 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-19351-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)