Parabolic Equations in Biology Growth, reaction, movement and diffusion /

This book presents several fundamental questions in mathematical biology such as Turing instability, pattern formation, reaction-diffusion systems, invasion waves and Fokker-Planck equations. These are classical modeling tools for mathematical biology with applications to ecology and population dyna...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Perthame, Benoît (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Lecture Notes on Mathematical Modelling in the Life Sciences,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03114nam a22004815i 4500
001 978-3-319-19500-1
003 DE-He213
005 20151103131424.0
007 cr nn 008mamaa
008 150909s2015 gw | s |||| 0|eng d
020 |a 9783319195001  |9 978-3-319-19500-1 
024 7 |a 10.1007/978-3-319-19500-1  |2 doi 
040 |d GrThAP 
050 4 |a QH323.5 
050 4 |a QH324.2-324.25 
072 7 |a PDE  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 570.285  |2 23 
100 1 |a Perthame, Benoît.  |e author. 
245 1 0 |a Parabolic Equations in Biology  |h [electronic resource] :  |b Growth, reaction, movement and diffusion /  |c by Benoît Perthame. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XII, 199 p. 39 illus., 13 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes on Mathematical Modelling in the Life Sciences,  |x 2193-4789 
505 0 |a 1.Parabolic Equations in Biology -- 2.Relaxation, Perturbation and Entropy Methods -- 3.Weak Solutions of Parabolic Equations in whole Space -- 4.Traveling Waves -- 5.Spikes, Spots and Pulses -- 6.Blow-up and Extinction of Solutions -- 7.Linear Instability, Turing Instability and Pattern Formation -- 8.The Fokker-Planck Equation -- 9.From Jumps and Scattering to the Fokker-Planck Equation -- 10.Fast Reactions and the Stefan free Boundary Problem. 
520 |a This book presents several fundamental questions in mathematical biology such as Turing instability, pattern formation, reaction-diffusion systems, invasion waves and Fokker-Planck equations. These are classical modeling tools for mathematical biology with applications to ecology and population dynamics, the neurosciences, enzymatic reactions, chemotaxis, invasion waves etc. The book presents these aspects from a mathematical perspective, with the aim of identifying those qualitative properties of the models that are relevant for biological applications. To do so, it uncovers the mechanisms at work behind Turing instability, pattern formation and invasion waves. This involves several mathematical tools, such as stability and instability analysis, blow-up in finite time, asymptotic methods and relative entropy properties. Given the content presented, the book is well suited as a textbook for master-level coursework. 
650 0 |a Mathematics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Biomathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical and Computational Biology. 
650 2 4 |a Applications of Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319194998 
830 0 |a Lecture Notes on Mathematical Modelling in the Life Sciences,  |x 2193-4789 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-19500-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)