Nonparametric Bayesian Inference in Biostatistics

As chapters in this book demonstrate, BNP has important uses in clinical sciences and inference for issues like unknown partitions in genomics. Nonparametric Bayesian approaches (BNP) play an ever expanding role in biostatistical inference from use in proteomics to clinical trials. Many research pro...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Mitra, Riten (Επιμελητής έκδοσης), Müller, Peter (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Έκδοση:1st ed. 2015.
Σειρά:Frontiers in Probability and the Statistical Sciences
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04887nam a22004935i 4500
001 978-3-319-19518-6
003 DE-He213
005 20151028051123.0
007 cr nn 008mamaa
008 150725s2015 gw | s |||| 0|eng d
020 |a 9783319195186  |9 978-3-319-19518-6 
024 7 |a 10.1007/978-3-319-19518-6  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MBNS  |2 bicssc 
072 7 |a MED090000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
245 1 0 |a Nonparametric Bayesian Inference in Biostatistics  |h [electronic resource] /  |c edited by Riten Mitra, Peter Müller. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XVII, 448 p. 96 illus., 47 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Frontiers in Probability and the Statistical Sciences 
505 0 |a Part I Introduction -- Bayesian Nonparametric Models -- Bayesian Nonparametric Biostatistics -- Part II Genomics and Proteomics -- Bayesian Shape Clustering -- Estimating Latent Cell Subpopulations with Bayesian Feature Allocation Models -- Species Sampling Priors for Modeling Dependence: An Application to the Detection of Chromosomal Aberrations -- Modeling the Association Between Clusters of SNPs and Disease Responses -- Bayesian Inference on Population Structure: from Parametric to Nonparametric Modeling -- Bayesian Approaches for Large Biological Networks -- Nonparametric Variable Selection, Clustering and Prediction for Large Biological Datasets -- Part III Survival Analysis -- Markov Processes in Survival Analysis -- Bayesian Spatial Survival Models -- Fully Nonparametric Regression Modelling of Misclassified Censored Time-to-Event Data -- Part IV Random Functions and Response Surfaces -- Neuronal Spike Train Analysis Using Gaussian Process Models -- Bayesian Analysis of Curves Shape Variation through Registration and Regression -- Biomarker-Driven Adaptive Design -- Bayesian Nonparametric Approaches for ROC Curve Inference -- Part V Spatial Data -- Spatial Bayesian Nonparametric Methods -- Spatial Species Sampling and Product Partition Models -- Spatial Boundary Detection for Areal Counts -- A Bayesian Nonparametric Causal Model for Regression Discontinuity Designs -- Bayesian Nonparametrics for Missing Data in Longitudinal Clinical Trials. 
520 |a As chapters in this book demonstrate, BNP has important uses in clinical sciences and inference for issues like unknown partitions in genomics. Nonparametric Bayesian approaches (BNP) play an ever expanding role in biostatistical inference from use in proteomics to clinical trials. Many research problems involve an abundance of data and require flexible and complex probability models beyond the traditional parametric approaches. As this book's expert contributors show, BNP approaches can be the answer. Survival Analysis, in particular survival regression, has traditionally used BNP, but BNP's potential is now very broad. This applies to important tasks like arrangement of patients into clinically meaningful subpopulations and segmenting the genome into functionally distinct regions. This book is designed to both review and introduce application areas for BNP. While existing books provide theoretical foundations, this book connects theory to practice through engaging examples and research questions. Chapters cover: clinical trials, spatial inference, proteomics, genomics, clustering, survival analysis and ROC curve. Riten Mitra is Assistant Professor in the Department of Bioinformatics and Biostatistics at University of Louisville. His research interests include Bayesian graphical models and nonparametric Bayesian methods with a special emphasis on applications in genomics and bioinformatics. Peter Mueller is Professor in the Department of Mathematics and the Department of Statistics & Data Science at the University of Texas at Austin. He has published widely on nonparametric Bayesian statistics, with an emphasis on applications in biostatistics and bioinformatics. 
650 0 |a Statistics. 
650 0 |a Biostatistics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences. 
650 2 4 |a Biostatistics. 
650 2 4 |a Statistical Theory and Methods. 
700 1 |a Mitra, Riten.  |e editor. 
700 1 |a Müller, Peter.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319195179 
830 0 |a Frontiers in Probability and the Statistical Sciences 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-19518-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)