Fractional Order Darwinian Particle Swarm Optimization Applications and Evaluation of an Evolutionary Algorithm /

This book examines the bottom-up applicability of swarm intelligence to solving multiple problems, such as curve fitting, image segmentation, and swarm robotics. It compares the capabilities of some of the better-known bio-inspired optimization approaches, especially Particle Swarm Optimization (PSO...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Couceiro, Micael (Συγγραφέας), Ghamisi, Pedram (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:SpringerBriefs in Applied Sciences and Technology,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02908nam a22004935i 4500
001 978-3-319-19635-0
003 DE-He213
005 20151204191434.0
007 cr nn 008mamaa
008 150616s2016 gw | s |||| 0|eng d
020 |a 9783319196350  |9 978-3-319-19635-0 
024 7 |a 10.1007/978-3-319-19635-0  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Couceiro, Micael.  |e author. 
245 1 0 |a Fractional Order Darwinian Particle Swarm Optimization  |h [electronic resource] :  |b Applications and Evaluation of an Evolutionary Algorithm /  |c by Micael Couceiro, Pedram Ghamisi. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a X, 75 p. 27 illus., 24 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Applied Sciences and Technology,  |x 2191-530X 
505 0 |a Particle Swarm Optimization (PSO) -- Fractional Order Darwinian PSO (FODPSO) -- Case Study I: Curve Fitting -- Case Study II: Image Segmentation -- Case Study III: Swarm Robotics -- Conclusions. 
520 |a This book examines the bottom-up applicability of swarm intelligence to solving multiple problems, such as curve fitting, image segmentation, and swarm robotics. It compares the capabilities of some of the better-known bio-inspired optimization approaches, especially Particle Swarm Optimization (PSO), Darwinian Particle Swarm Optimization (DPSO) and the recently proposed Fractional Order Darwinian Particle Swarm Optimization (FODPSO), and comprehensively discusses their advantages and disadvantages. Further, it demonstrates the superiority and key advantages of using the FODPSO algorithm, such as its ability to provide an improved convergence towards a solution, while avoiding sub-optimality. This book offers a valuable resource for researchers in the fields of robotics, sports science, pattern recognition and machine learning, as well as for students of electrical engineering and computer science. 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 0 |a System theory. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Systems Theory, Control. 
700 1 |a Ghamisi, Pedram.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319196343 
830 0 |a SpringerBriefs in Applied Sciences and Technology,  |x 2191-530X 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-19635-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)