|
|
|
|
LEADER |
03150nam a22005055i 4500 |
001 |
978-3-319-19734-0 |
003 |
DE-He213 |
005 |
20151204180842.0 |
007 |
cr nn 008mamaa |
008 |
150714s2015 gw | s |||| 0|eng d |
020 |
|
|
|a 9783319197340
|9 978-3-319-19734-0
|
024 |
7 |
|
|a 10.1007/978-3-319-19734-0
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a QA251.5
|
072 |
|
7 |
|a PBF
|2 bicssc
|
072 |
|
7 |
|a MAT002010
|2 bisacsh
|
082 |
0 |
4 |
|a 512.46
|2 23
|
100 |
1 |
|
|a Shult, Ernest.
|e author.
|
245 |
1 |
0 |
|a Algebra
|h [electronic resource] :
|b A Teaching and Source Book /
|c by Ernest Shult, David Surowski.
|
264 |
|
1 |
|a Cham :
|b Springer International Publishing :
|b Imprint: Springer,
|c 2015.
|
300 |
|
|
|a XXII, 539 p. 6 illus.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
505 |
0 |
|
|a Basics -- Basic Combinatorial Principles of Algebra -- Review of Elementary Group Properties -- Permutation Groups and Group Actions -- Normal Structure of Groups -- Generation in Groups -- Elementary Properties of Rings -- Elementary properties of Modules -- The Arithmetic of Integral Domains -- Principal Ideal Domains and Their Modules -- Theory of Fields -- Semiprime Rings -- Tensor Products.
|
520 |
|
|
|a This book presents a graduate-level course on modern algebra. It can be used as a teaching book – owing to the copious exercises – and as a source book for those who wish to use the major theorems of algebra. The course begins with the basic combinatorial principles of algebra: posets, chain conditions, Galois connections, and dependence theories. Here, the general Jordan–Holder Theorem becomes a theorem on interval measures of certain lower semilattices. This is followed by basic courses on groups, rings and modules; the arithmetic of integral domains; fields; the categorical point of view; and tensor products. Beginning with introductory concepts and examples, each chapter proceeds gradually towards its more complex theorems. Proofs progress step-by-step from first principles. Many interesting results reside in the exercises, for example, the proof that ideals in a Dedekind domain are generated by at most two elements. The emphasis throughout is on real understanding as opposed to memorizing a catechism and so some chapters offer curiosity-driven appendices for the self-motivated student.
|
650 |
|
0 |
|a Mathematics.
|
650 |
|
0 |
|a Algebra.
|
650 |
|
0 |
|a Associative rings.
|
650 |
|
0 |
|a Rings (Algebra).
|
650 |
|
0 |
|a Field theory (Physics).
|
650 |
|
0 |
|a Group theory.
|
650 |
1 |
4 |
|a Mathematics.
|
650 |
2 |
4 |
|a Associative Rings and Algebras.
|
650 |
2 |
4 |
|a Group Theory and Generalizations.
|
650 |
2 |
4 |
|a Field Theory and Polynomials.
|
650 |
2 |
4 |
|a Algebra.
|
700 |
1 |
|
|a Surowski, David.
|e author.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319197333
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1007/978-3-319-19734-0
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-SMA
|
950 |
|
|
|a Mathematics and Statistics (Springer-11649)
|