Statistical Methods for Data Analysis in Particle Physics

This concise set of course-based notes provides the reader with the main concepts and tools to perform statistical analysis of experimental data, in particular in the field of high-energy physics (HEP). First, an introduction to probability theory and basic statistics is given, mainly as reminder fr...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Lista, Luca (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Έκδοση:1st ed. 2016.
Σειρά:Lecture Notes in Physics, 909
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03087nam a22005415i 4500
001 978-3-319-20176-4
003 DE-He213
005 20151204164011.0
007 cr nn 008mamaa
008 150724s2016 gw | s |||| 0|eng d
020 |a 9783319201764  |9 978-3-319-20176-4 
024 7 |a 10.1007/978-3-319-20176-4  |2 doi 
040 |d GrThAP 
050 4 |a QC793-793.5 
050 4 |a QC174.45-174.52 
072 7 |a PHQ  |2 bicssc 
072 7 |a SCI051000  |2 bisacsh 
082 0 4 |a 539.72  |2 23 
100 1 |a Lista, Luca.  |e author. 
245 1 0 |a Statistical Methods for Data Analysis in Particle Physics  |h [electronic resource] /  |c by Luca Lista. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XIX, 172 p. 63 illus., 59 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Physics,  |x 0075-8450 ;  |v 909 
505 0 |a Preface -- Probability theory -- Probability Distribution Functions -- Bayesian approach to probability -- Random numbers and Monte Carlo Methods -- Parameter estimate -- Confidence intervals -- Hypothesis tests -- Upper Limits -- Bibliography. 
520 |a This concise set of course-based notes provides the reader with the main concepts and tools to perform statistical analysis of experimental data, in particular in the field of high-energy physics (HEP). First, an introduction to probability theory and basic statistics is given, mainly as reminder from advanced undergraduate studies, yet also in view to clearly distinguish the Frequentist versus Bayesian approaches and interpretations in subsequent applications. More advanced concepts and applications are gradually introduced, culminating in the chapter on upper limits as many applications in HEP concern hypothesis testing, where often the main goal is to provide better and better limits so as to be able to distinguish eventually between competing hypotheses or to rule out some of them altogether. Many worked examples will help newcomers to the field and graduate students to understand the pitfalls in applying theoretical concepts to actual data. 
650 0 |a Physics. 
650 0 |a Elementary particles (Physics). 
650 0 |a Quantum field theory. 
650 0 |a Physical measurements. 
650 0 |a Measurement. 
650 0 |a Statistics. 
650 1 4 |a Physics. 
650 2 4 |a Elementary Particles, Quantum Field Theory. 
650 2 4 |a Measurement Science and Instrumentation. 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319201757 
830 0 |a Lecture Notes in Physics,  |x 0075-8450 ;  |v 909 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-20176-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
912 |a ZDB-2-LNP 
950 |a Physics and Astronomy (Springer-11651)