Mathematical Concepts

The main intention of this book is to describe and develop the conceptual, structural and abstract thinking of mathematics. Specific mathematical structures are used to illustrate the conceptual approach; providing a deeper insight into mutual relationships and abstract common features. These ideas...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Jost, Jürgen (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Έκδοση:1st ed. 2015.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03317nam a22005655i 4500
001 978-3-319-20436-9
003 DE-He213
005 20151204172058.0
007 cr nn 008mamaa
008 150910s2015 gw | s |||| 0|eng d
020 |a 9783319204369  |9 978-3-319-20436-9 
024 7 |a 10.1007/978-3-319-20436-9  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
100 1 |a Jost, Jürgen.  |e author. 
245 1 0 |a Mathematical Concepts  |h [electronic resource] /  |c by Jürgen Jost. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XV, 312 p. 130 illus., 16 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Overview and perspective -- Foundations -- Relations -- Spaces -- What is space? -- Spaces of relations -- Structures -- Categories -- Topoi -- A review of examples. 
520 |a The main intention of this book is to describe and develop the conceptual, structural and abstract thinking of mathematics. Specific mathematical structures are used to illustrate the conceptual approach; providing a deeper insight into mutual relationships and abstract common features. These ideas are carefully motivated, explained and illustrated by examples so that many of the more technical proofs can be omitted. The book can therefore be used: ·         simply as an overview of the panorama of mathematical structures and the relations between them, to be supplemented by more detailed texts whenever you want to acquire a working knowledge of some structure ·         by itself as a first introduction to abstract mathematics ·         together with existing textbooks, to put their results into a more general perspective ·         to gain a new and hopefully deeper perspective after having studied such textbooks Mathematical Concepts has a broader scope and is less detailed than standard mathematical textbooks so that the reader can readily grasp the essential concepts and ideas for individual needs. It will be suitable for advanced mathematicians, postgraduate students and for scientists from other fields with some background in formal reasoning.  . 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Category theory (Mathematics). 
650 0 |a Homological algebra. 
650 0 |a Algebra. 
650 0 |a Convex geometry. 
650 0 |a Discrete geometry. 
650 0 |a Differential geometry. 
650 0 |a Biomathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Category Theory, Homological Algebra. 
650 2 4 |a General Algebraic Systems. 
650 2 4 |a Convex and Discrete Geometry. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Mathematical and Computational Biology. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319204352 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-20436-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)