Dependent Data in Social Sciences Research Forms, Issues, and Methods of Analysis /

This volume presents contributions on handling data in which the postulate of independence in the data matrix is violated. When this postulate is violated and when the methods assuming independence are still applied, the estimated parameters are likely to be biased, and statistical decisions are ver...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Stemmler, Mark (Επιμελητής έκδοσης), von Eye, Alexander (Επιμελητής έκδοσης), Wiedermann, Wolfgang (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Έκδοση:1st ed. 2015.
Σειρά:Springer Proceedings in Mathematics & Statistics, 145
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03271nam a22004935i 4500
001 978-3-319-20585-4
003 DE-He213
005 20151029221055.0
007 cr nn 008mamaa
008 151019s2015 gw | s |||| 0|eng d
020 |a 9783319205854  |9 978-3-319-20585-4 
024 7 |a 10.1007/978-3-319-20585-4  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a JHBC  |2 bicssc 
072 7 |a SOC027000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
245 1 0 |a Dependent Data in Social Sciences Research  |h [electronic resource] :  |b Forms, Issues, and Methods of Analysis /  |c edited by Mark Stemmler, Alexander von Eye, Wolfgang Wiedermann. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XIII, 385 p. 103 illus., 89 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1009 ;  |v 145 
505 0 |a Growth Curve Modeling -- Directional Dependence -- Dydatic Data Modeling -- Item Response Modeling -- Other Methods for the Analyses of Dependent Data. . 
520 |a This volume presents contributions on handling data in which the postulate of independence in the data matrix is violated. When this postulate is violated and when the methods assuming independence are still applied, the estimated parameters are likely to be biased, and statistical decisions are very likely to be incorrect. Problems associated with dependence in data have been known for a long time, and led to the development of tailored methods for the analysis of dependent data in various areas of statistical analysis. These methods include, for example, methods for the analysis of longitudinal data, corrections for dependency, and corrections for degrees of freedom. This volume contains the following five sections: growth curve modeling, directional dependence, dyadic data modeling, item response modeling (IRT), and other methods for the analysis of dependent data (e.g., approaches for modeling cross-section dependence, multidimensional scaling techniques, and mixed models). Researchers and graduate students in the social and behavioral sciences, education, econometrics, and medicine will find this up-to-date overview of modern statistical approaches for dealing with problems related to dependent data particularly useful. 
650 0 |a Statistics. 
650 0 |a Psychometrics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistics for Social Science, Behavorial Science, Education, Public Policy, and Law. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Psychometrics. 
700 1 |a Stemmler, Mark.  |e editor. 
700 1 |a von Eye, Alexander.  |e editor. 
700 1 |a Wiedermann, Wolfgang.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319205847 
830 0 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1009 ;  |v 145 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-20585-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)