Evolution Equations of von Karman Type

In these notes we consider two kinds of nonlinear evolution problems of von Karman type on Euclidean spaces of arbitrary even dimension. Each of these problems consists of a system that results from the coupling of two highly nonlinear partial differential equations, one hyperbolic or parabolic and...

Full description

Bibliographic Details
Main Authors: Cherrier, Pascal (Author), Milani, Albert (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edition:1st ed. 2015.
Series:Lecture Notes of the Unione Matematica Italiana, 17
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 03013nam a22005055i 4500
001 978-3-319-20997-5
003 DE-He213
005 20151204181731.0
007 cr nn 008mamaa
008 151012s2015 gw | s |||| 0|eng d
020 |a 9783319209975  |9 978-3-319-20997-5 
024 7 |a 10.1007/978-3-319-20997-5  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 |a Cherrier, Pascal.  |e author. 
245 1 0 |a Evolution Equations of von Karman Type  |h [electronic resource] /  |c by Pascal Cherrier, Albert Milani. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XVI, 140 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes of the Unione Matematica Italiana,  |x 1862-9113 ;  |v 17 
505 0 |a Operators and Spaces -- Weak Solutions --  Strong Solutions, m + k _ 4 -- Semi-Strong Solutions, m = 2, k = 1. 
520 |a In these notes we consider two kinds of nonlinear evolution problems of von Karman type on Euclidean spaces of arbitrary even dimension. Each of these problems consists of a system that results from the coupling of two highly nonlinear partial differential equations, one hyperbolic or parabolic and the other elliptic. These systems take their name from a formal analogy with the von Karman equations in the theory of elasticity in two dimensional space. We establish local (respectively global) results for strong (resp., weak) solutions of these problems and corresponding well-posedness results in the Hadamard sense. Results are found by obtaining regularity estimates on solutions which are limits of a suitable Galerkin approximation scheme. The book is intended as a pedagogical introduction to a number of meaningful application of classical methods in nonlinear Partial Differential Equations of Evolution. The material is self-contained and most proofs are given in full detail. The interested reader will gain a deeper insight into the power of nontrivial a priori estimate methods in the qualitative study of nonlinear differential equations. 
650 0 |a Mathematics. 
650 0 |a Partial differential equations. 
650 0 |a Differential geometry. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Differential Geometry. 
700 1 |a Milani, Albert.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319209968 
830 0 |a Lecture Notes of the Unione Matematica Italiana,  |x 1862-9113 ;  |v 17 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-20997-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)